Question

16. The stress state in a two dimensional body, in which the only non-vanishing stress components are a single pair of shearing stresses is called simple shear. Take σ12 σ21 and all other components of σ equal to zero. (a) Find the principal values and principal directions of this stress state. (b) Find the maximum shearing stress and planes on which it acts.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
16. The stress state in a two dimensional body, in which the only non-vanishing stress components...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 0 The state of stress at a point in a body is specified by the following...

    0 The state of stress at a point in a body is specified by the following stress components: = 110MPa = 60MPa , = -86 MPa 0 = 55 MPa Determine the principal stresses, direction cosines of the principal stress directions and the maximum shearing stress.

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • . Consider the element shown. Determine the state of stress with respect to an element oriented 2...

    . Consider the element shown. Determine the state of stress with respect to an element oriented 22.5° CCW with respect to the element shown. (b) Find the principal stresses. (c) Find the principal planes. (d) Find the maximum shear stresses. (e) Find the maximum shear-stress planes. (f Sketch all the above stresses on appropriately oriented 560 kPa 2100 kPa planes using a ray diagram. 300 kPa (g) Draw Mohr's circle for the element and indicate items (a) - (e) on...

  • The state of stress at a point on a body is given by the following stress...

    The state of stress at a point on a body is given by the following stress components: 0 = 15 MPa, Oy = -22 MPa and Try = 9 MPa Matlab input: sx = 15; sy = -22; txy = 9; 1) Determine the principal stresses 01 and 02. 1 = MPa 02= MPa 2) Sketch the principal stress element, defined by the rotation @pl. y Enter the rotation @pi (-360º < Opl < 360°): Opl = Add stress components:...

  • Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the p...

    please help me solve this whole mechanical design problem thanks Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the principal stresses, s, (c) the maximum in plane shearing stress, Tmar and (d) its orientation, p. (e) the normal stress at the plane of maximum shear stress, (1) sketch of the rotated plane element for the principal stresses and the rotated plane element for maximum shear stress similar to figure 1, below...

  • Question # 2 110 marks t45 MPa For the state of plane stress shown in the...

    Question # 2 110 marks t45 MPa For the state of plane stress shown in the figure: a Construct Mohr's circle (4 marks), b- Determine the principal stresses (2 marks), Determine the directions of principal planes (2 marks), d- Determine the maximum shearing corresponding normal stress (2 marks). a-80 MPa C- stress and the

  • 1) Given the following state of stress at a point in a continu 7 0 14...

    1) Given the following state of stress at a point in a continu 7 0 14 [a] =| 08 01 MPa, 14 04 determine the principal stresses and principal directions 2) Find the principal stresses, maximum in-plane shear stresses, maximum shear stress, and the orientations of the principal stresses for the stress state given below. Comment on the orientations of the maximum in-plane shear stresses 12 9 01 [o9 -12 0 MPa. 0 0 6 2

  • Problem 1 (10pts) The components of stress at a point are given as right. Compute the...

    Problem 1 (10pts) The components of stress at a point are given as right. Compute the effective/von Mises stress o Also determine the components of stress vector T( σ/) if this stress acts on the plane 2x+ 3y-52-5 0. (Note, first find the unit normal vector to this surface.) σ- ,=13-2-31 MPa 1-32丿 Extra Credit (5pts) Find the three principal stresses for this state of stress. Also determine the "principal direction/vector' of the largest tensile principal stress.

  • Consider a point in a structural member that is subjected to plane stress. Normal and shear...

    Consider a point in a structural member that is subjected to plane stress. Normal and shear stress magnitudes acting on horizontal and vertical planes at the point are Sx = 45 MPa, Sy = 10 MPa, and Sxy = 36 MPa. (a) Determine the principal stresses ( σ p 1 > σ p 2 ) and the maximum in-plane shear stress τ max acting at the point. (b) Find the smallest rotation angle θ p (counterclockwise is positive, clockwise is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT