Question

The following is known about a discrete-time LTI system with input rn] and output vin: (a) If x[n] = (-2) for all n, then y[n] = 0 for all n. (b) If r/n] (1/2)u[n] for all n, then y[n is of the form: where a is a constant (c) Determine the value of the constant a. (d) Determine the response vinl if the input lnl is n for all n.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ca)i so,.we canろay tnaf H(-2.) ご02 .ו 31A 너 ทุ

Add a comment
Know the answer?
Add Answer to:
The following is known about a discrete-time LTI system with input rn] and output vin: (a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Name: 10. [8 points] Consider a discrete-time LTI system with input x[n] and out- put y[n]....

    Name: 10. [8 points] Consider a discrete-time LTI system with input x[n] and out- put y[n]. When the input signal x[n] = (6)" is applied to the system, the output signal is y[n] = 0 for all n When the input signal xn] (3)" u[n] is applied to the system, the output signal is y[n] = A 8[n] + 2 (5)" u[n] for all n, where A is a constant number a) Find A. b) Find the impulse response of...

  • Discrete-time convolution. Use of shift invariance for LTI systems. A discrete-time LTI system is described the...

    Discrete-time convolution. Use of shift invariance for LTI systems. A discrete-time LTI system is described the its impulse response h[n]. h[n] = (5)"u[n]. n-3 1 An input x[n] = u[n – 4) is applied. The output of the system y[n] is given by: x[r] – 54 G)" ()") un 14 The correct answer is not provided gắn] = [16(5)” – 54(5) ] n] y[n] = [16()" – 54(+)"] uſn – 4

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • Consider an LTI discrete-time system that has impulse response h n Tn-12) 1 if otherwise a) Deter...

    Consider an LTI discrete-time system that has impulse response h n Tn-12) 1 if otherwise a) Determine the magnitude H(Q and the phase response LH(D for-r < Ω < π Enter Ω as "and enter the piecev se function Η Ω using the hea side function b)Determine the output of the system, rn, if the input is given by z n-Sn-9 +com( ) Enter your answer in terms of hin y[n] = In your answers, enter 2(n) for a discrete-time...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n...

    Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output y[n] described by bx[n-21- ax[n-3 for n 2 0, where a and b are real-valued positive coefficients. A) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? B) What are the initial conditions and their values? Why? C) Draw the block diagram of the filter relating input x[n] and output y[n] D) Derive a formula for the transfer function in...

  • LTI Systems and Discrete-Time Fourier Series-1 Problem Statement Consider a causal discrete-time LTI system whose input...

    LTI Systems and Discrete-Time Fourier Series-1 Problem Statement Consider a causal discrete-time LTI system whose input r[n] and output yinl are related by the following equation: Find the Fourier series representation of the output y[n] for (b) ncos()

  • The frequency response Hf(w) of a discrete-time LTI system is as shown.

     The frequency response Hf(w) of a discrete-time LTI system is as shown. Hf(w) is real-valued so the phase is 0. Find the output y(n) when the input x(n) is x(n) = 1+cos(0.3πn). Put y(n) in simplest real form (your answer should not contain j) 

  • Consider a discrete-time LTI system with impulse response hn on-un-1), where jal < 1. Find the...

    Consider a discrete-time LTI system with impulse response hn on-un-1), where jal < 1. Find the output y[n] of the system to the input x[n] = un +1].

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT