Question

Q3.)A block of ice of mass m and a wedge of ice of mass M can slide on one another and on a horizontal ice sur- face without friction. Initially the wedge is at rest and the block moves towards it with speed to. When the block reaches the wedge it slides up the slope to a maximum height, h above the horizontal. It then descends and re- turns to the horizontal surface. What is the height, h reached by the block? b) What are the final velocities of the block and wedge after they are no longer in contact? Figure 1 M
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ll e ulan Luoth et that eloedty ie v ゴゾこ anVo m+tM 2 2. MTMaud レ i) 2 6

Add a comment
Know the answer?
Add Answer to:
A block of ice of mass m and a wedge of ice of mass M can...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m starts from rest and slides down from the top of a...

    A block of mass m starts from rest and slides down from the top of a wedge of height h and length d. The surface of the wedge forms an angle of ? with respect to the horizontal direction. The force of kinetic friction between the block and the wedge is f. How fast is the block traveling when it reaches the bottom of the wedge?

  • A block of ice at 0oC whose mass initially is m = 42.1 kg slides along...

    A block of ice at 0oC whose mass initially is m = 42.1 kg slides along a horizontal surface, starting at a speed v0 = 2.35 m/s and finally coming to rest after traveling a distance d = 2.93 m. Compute the mass of ice melted as a result of the friction between the block and the surface. (Assume that all the heat generated owing to friction goes into the block of ice.)

  • 1. The small mass m is to slide down the large mass M without friction. The...

    1. The small mass m is to slide down the large mass M without friction. The track along which the small block slides is a quarter circle with radius R. The large mass itself is free to move on a frictionless horizontal surface. Initially both masses are at rest with the small mass at the top of the quarter circle, as shown in the figure. (a) (5 Pts.) What is the initial total mechanical energy with respect to the horizontal...

  • Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface...

    Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface toward a large curved movable ramp n and has a smooth circular frictionless face up which the block can easily slide. When the block slides up the ramp, it momentarily reaches a maximum height a shown in Figure II, and then slides back down the frictionless surface as shown in Figure III. face to the horizontal (a) Find the velocity of the ramp at...

  • BY Problem - 11P29 A block of mass m is held at rest on a horizontal...

    BY Problem - 11P29 A block of mass m is held at rest on a horizontal surface with which it has coefficient of kinetic friction pk. The block is in contact with a spring of force constant k which is compressed by Ax, as shown at right. The block is released and allowed to slide to the left. (a) What is the speed v of the block at the moment when the spring is no longer com- pressed? (b) The...

  • A block starts from rest and slides without friction along the surface of a hemisphere of...

    A block starts from rest and slides without friction along the surface of a hemisphere of radius R = 1.7 m. As the block slides, eventually it loses contact with the hemisphere. What is the height, h, when the block loses contact with the hemisphere? A block starts from rest and slides without friction along the surface of a hemisphere of radius R = 1.7 m. As the block slides, eventually it loses contact with the hemisphere.What is the height,...

  • At a height h = 2.0 m on top a frictionless slope, a block with mass...

    At a height h = 2.0 m on top a frictionless slope, a block with mass m = 2.5 Kg is given an initial velocity v_i = 5.0 m/s before it slides down towards the rough horizontal surface below. If this horizontal surface has a coefficient of kinetic friction mu_k = 0.4, then: what is the blocks speed after traveling 4.0 m on the rough surface? After coming to a stop how much the internal energy of the whole system...

  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

  • A bullet of mass m = 8.65 g is fired into a block of mass M...

    A bullet of mass m = 8.65 g is fired into a block of mass M = 1.54 kg that is initially at rest on a rough surface as shown in the drawing below. (The coefficient of friction is 0.42 between the block and the surface.) The bullet ends up stuck in the block, and together they slide across the surface and come to rest. If the combined object slides D = 1.34 m across the surface before stopping, what...

  • A bullet of mass m is fired into a block of mass M that is at...

    A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is ?k. Part A Find an expression for the bullet's speed vbullet. Part B What is the speed of a 9.0 g bullet that, when fired into a 12 kg stationary wood block, causes the block to slide 5.4 cm across a wood table? Assume...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT