Question

At a height h = 2.0 m on top a frictionless slope,
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
At a height h = 2.0 m on top a frictionless slope, a block with mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use work and energy to find an expression for the speed of the block just before...

    Use work and energy to find an expression for the speed of the block just before it hits the floor if: the coefficient of kinetic friction for the block on the table is mu_k. the table is frictionless. A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal stir face, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground...

  • A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height...

    A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height 6 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: 1.Initial gravitational potential energy on Ramp #1: U1G = J 2.Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K =...

  • A track consists of a frictionless incline plane, which is a height of 0.5 m, and...

    A track consists of a frictionless incline plane, which is a height of 0.5 m, and a rough horizontal section with a coefficient of kinetic friction 0.02. Block A, whose mass is1.5 kg, is released from the top of the incline plane, slides down and collides instantaneously and inelastically with iden tical block B at the lowest point. The two blocks move to the right through the rough section of the track until they stop. Determine the initial potential energy...

  • Blocks A and B are on a frictionless horizontal surface. Block A is to the left...

    Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Block A has a mass of 2.5 kg and B has a mass of 1.3 kg. Block A is struck from the left with a hammer. The average force of this impact is 65 N and lasts for 0.12 seconds. Block A slides to the right, strikes and sticks to block B. The two blocks then slide to the right together....

  • A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide...

    A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-wide horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.25. (a) What is the speed of the box just before reaching the rough surface?...

  • Blocks A and B are on a frictionless horizontal surface. Block A is to the left...

    Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Block A has a mass of 2.5 kg and B has a mass of 1.3 kg. Block A is struck from the left with a hammer. The average force of this impact is 65 N and lasts for 0.12 seconds. Block A slides to the right, strikes and sticks to block B. The two blocks then slide to the right together....

  • Block A of mass, mA = 1.7 kg is shot from a spring device of spring...

    Block A of mass, mA = 1.7 kg is shot from a spring device of spring constant, k = 700 N/m along a frictionless horizontal surface. The initial compression of the spring is 0.300 m. The shot makes the block rise to another horizontal level at a height h= 1m above the first. On this horizontal it collides with another stationary block B of mass mB = 3.5 kg. The blocks stick together and encounter a rough surface. The blocks...

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

  • 1. A block of mass m = 0.23 kg slides with initial velocityv0 = 1.4...

    1. A block of mass m = 0.23 kg slides with initial velocity v0 = 1.4 m/s along a frictionless surface (as in the figure). The block next slides through a region of length d = 0.25 m with kinetic friction. After passing through the friction region, the block slides up a curved ramp until momentarily coming to rest at a height h above the level surface. If the kinetic friction coefficient μ k = 0.204, what height h does...

  • a block of mass 10 kg is initially at rest when it slides down a frictionless...

    a block of mass 10 kg is initially at rest when it slides down a frictionless incline whose height is 10 m and is pitched at an angle of 30 degrees. At the bottom of the incline the mass encounters a horizontal surface that has a coefficient of kinetic friction of 0.4 with the mass. How far from the bottom of the incline will the mass come to a stop?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT