Question

A. 1st Order Systems Consider the spring-damper system shown in Figure 1. Figure 1: spring-damper system (1)Draw FBD and dedu
0 0
Add a comment Improve this question Transcribed image text
Answer #1

14ere 9 as ume that is mesured brom equilibrium position. KU Let blt) is the forcing bunetion whic h depend Lel Bli) C an beУ - Xet Xp Ciet X Decay euponentially with time amplitude after State) Omg depend on particular solution. So net long dusatio

Add a comment
Know the answer?
Add Answer to:
A. 1st Order Systems Consider the spring-damper system shown in Figure 1. Figure 1: spring-damper system...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the following second-order ODE representing a spring-mass-damper system for zero initial...

    Consider the following second-order ODE representing a spring-mass-damper system for zero initial conditions (forced response): where u is the Unit Step Function (of magnitude 1 a. Use MATLAB to obtain an analytical solution x() for the differential equation, using the Laplace Transforms approach (do not use DSOLVE). Obtain the analytical expression for ao. Also obtain a plot of x() (for a simulation of 14 seconds) b. Obtain the Transfer Function representation for the system. c. Use MATLAB to obtain the...

  • API A spring-mass-damper system is shown in Figure API (a). The Bode diagram obtained by experimental...

    API A spring-mass-damper system is shown in Figure API (a). The Bode diagram obtained by experimental means using a sinusoidal forcing function is shown in Figure AP1(b). Determine the numerical values of m, b, and k -10 -20 5 -30 -40 -50 spring, k r(0) Mass, -90° Damper, b -180° 0.01 0.1 10 100 w (rad/s) FIGURE AP1 A spring-mass- damper system.

  • Consider a mass-spring-damper system whose motion is described by the following system of differe...

    Consider a mass-spring-damper system whose motion is described by the following system of differentiat equations [c1(f-k)+k,(f-х)-c2(x-9), f=f(t), y:' y(t) with x=x( t), where the function fit) is the input displacement function (known), while xit) and yt) are the two generalized coordinates (both unknown) of the mass-spring-damper systenm. 1. Identify the type of equations (e.g. H/NH, ODE/PDE, L/NL, order, type of coefficients, etc.J. 2. Express this system of differential equations in matrix form, assume f 0 and then determine its general...

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial...

    a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial conditions (forced response): 2x + 2x + x=u, x(0) = 0, *(0) = 0 where u is the Unit Step Function (of magnitude 1). a. Use MATLAB to obtain an analytical solution x(t) for the differential equation, using the Laplace Transforms approach (do not use DSOLVE). Obtain the analytical expression for x(t). Also obtain a plot of .x(t) (for a simulation of 14 seconds)...

  • Consider the mass-spring-damper system depicted in the figure below, where the input of the system is...

    Consider the mass-spring-damper system depicted in the figure below, where the input of the system is the applied force F(t) and the output of the system is xít) that is the displacement of the mass according to the coordinate system defined in that figure. Assume that force F(t) is applied for t> 0 and the system is in static equilibrium before t=0 and z(t) is measured from the static equilibrium. b m F Also, the mass of the block, the...

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Given the the mass-spring-damper system in Figure 3.10, assume that the contact forces are viscous friction....

    Given the the mass-spring-damper system in Figure 3.10, assume that the contact forces are viscous friction. 1. State the number of degrees of freedom in the system. 2. Derive the equations of motion and state them in matrix notation. 3. If f(t) = a (a constant), what is the long term state of the system? 4. If the forcing is f(t) = A sin(ωt), and the system parameters are given in Table 3.1, simulate the response from rest. Plot all...

  • matlab INSTRUCTIONS Consider the spring-mass damper that can be used to model many dynamic systems Applying Newton...

    matlab INSTRUCTIONS Consider the spring-mass damper that can be used to model many dynamic systems Applying Newton's Second Law to a free-body diagram of the mass m yields the following ODE m습+8 +kx=F(t) (1) dt2 Where F() is a forcing function, Consider the case where the forcing function itself is a damped oscillation: Where F F(t)-Ae-Bt COS(wt) (2) For this activity we'll see how we can formulate this ODE for a solution using MATLAB that could be used to study...

  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT