Question

Consider a two-stage cascade refrigeration system operatingbetween the pressure limits of 0.8 and 0.14 MPa....

Consider a two-stage cascade refrigeration system operating between the pressure limits of 0.8 and 0.14 MPa. Each stage operates on the ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counterflow heat exchanger where both streams enter at about 0.55 MPa. The mass flow rate of the refrigerant through the upper cycle is 0.24 kg/s

image.png

(a) Illustrate the two-stage cascade refrigeration cycle on both a temperature-entropy (T-s) diagram and a pressure-enthalpy (P-h) diagram identifying all the state points with respect to the saturation lines. Clearly illustrate the advantages of a two-stage cascade refrigeration over a standard refrigeration cycle. 

(b) Construct a property table giving the pressure, enthalpy, quality and phase for all the state points and hence determine the mass flow rate of the refrigerant through the lower cycle, the rate of heat removal from the refrigerated space, the total power input to the compressors, and the coefficient of performance of this cascade refrigerator.


3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a two-stage cascade refrigeration system operatingbetween the pressure limits of 0.8 and 0.14 MPa....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • solve it carefully please air condition & refrigerator refrigeration system operating between pressure limits of 0.8...

    solve it carefully please air condition & refrigerator refrigeration system operating between pressure limits of 0.8 stage operates on an ideal vapor compression refrigeration cycle with 2. Consider a 2 stage cascade and 0.14 MPa. Each R-134a as refrigerant. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counter flow heat exchanger where both streams enter at about 0.32 MPa. If the mass flow rate of the refrigerant through the upper cycle is 0.05...

  • A two-stage cascade refrigeration system operates between the pressure limits of 1.4MPa and 200 kPa with...

    A two-stage cascade refrigeration system operates between the pressure limits of 1.4MPa and 200 kPa with refrigerant-134a. The fluid leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.50 MPa. Part of the refrigerant evaporates in the flashing process, and this vapor is mixed with the refrigerant leaving the low-pressurin compressor. The liguid in the flash chamber iS throttled to the evaporator pressure and cools the refrigerated space. The mass flow rate of...

  • NOTE: This is a multi-part question Once an answer is submitted you will be unable to return to t...

    NOTE: This is a multi-part question Once an answer is submitted you will be unable to return to this part Consider a two-stage cascade refrigeration system operating between the pressure limits of 1.4 MPa and 140 kPa with refrigerant-134a as the working fluid. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counterflow heat exchanger where the pressure in the upper and lower cycles are 0.7 and 08 MPa, respectively. In both cycles, the...

  • 5-6 Figure 5-6 shows the schematic diagram for a two-stage cascade refrigeration system. Each stage operates...

    5-6 Figure 5-6 shows the schematic diagram for a two-stage cascade refrigeration system. Each stage operates on an ideal vapor-compression refrigeration cycle with refrigerant- 134a as the working fluid. All the important data and refrigerant phases are given in the schematic diagrams. By referring to the diagrams, determine: (a) The ratio of mass flow rate of the system and draw a T-s diagram complete with the data given. Enthalpy values for each states. Compressor power input for Cycle A and...

  • Problem 2 (30 pts): Consider a two-stage vapor-compression refrigeration system operating between the pressure limits of...

    Problem 2 (30 pts): Consider a two-stage vapor-compression refrigeration system operating between the pressure limits of 1.5 MPa and 150 kPa with refrigerant-134a as the working fluid. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. The mass flow rate of the refrigerant through the low pressure compressor is 0.15 kg/s. Assuming the refrigerant leaves the evaporator as a saturated vapor, determine (a) the mass flow rate of the...

  • A refrigeration system with a flash chamber operates with R134a between the pressure limits of 1.0 and 0.1 MPa. Th...

    A refrigeration system with a flash chamber operates with R134a between the pressure limits of 1.0 and 0.1 MPa. The refrigerant leaves the condenser as saturated liquid and is throttled to a flash chamber operating at 0.5 MPa. The refrigerant leaving the low-pressure compressor at 0.5 MPa is also routed to the flash chamber. The vapor in the flash chamber is then compressed to the condenser pressure by the high-pressure compressor, and the liquidis throttled to the evaporator pressure. Assume...

  • Problem #1 (40 Marks) A refrigeration system is designed to maintain a cool space at -20°C in arn environment of +50°C....

    Problem #1 (40 Marks) A refrigeration system is designed to maintain a cool space at -20°C in arn environment of +50°C. The wide temperature range is difficult to achieve with a single refrigerant, because the refrigerant will generally be at excessively high pressures at the top of the temperature range, and sub-atmospheric pressures at the bottom end The problem is solved with a 2-stage cascaded system that uses refrigerant 134a (R134a) and refrigerant 22 (R22) respectively for the high temperature...

  • A refrigerator operates on an ideal vapor compression refrigeration cycle with R-134a as the working fluid....

    A refrigerator operates on an ideal vapor compression refrigeration cycle with R-134a as the working fluid. The evaporator pressure is 0.12 MPa and the condenser pressure is 0.8 MPa. If the rate of heat removal from the refrigerated space is 32 kJ/s, the mass flow rate of refrigerant is

  • Pressure limits in a two-stage cooling system are 0.9 MPa and 250kPa. Refrigerant condenser comes out...

    Pressure limits in a two-stage cooling system are 0.9 MPa and 250kPa. Refrigerant condenser comes out as saturated liquid and works at 700kPa pressure reduced to the pressure of the evaporation chamber. Meanwhile, some of the refrigerant evaporates and is mixed with the fluid from the low pressure compressor. The mixture is then It is compressed to condenser pressure with high pressure compressor. The liquid in the evaporation chamber is reduced to evaporator pressure and draws heat from the cooled...

  • (100 points) Figure below shows the schematic diagram of a two-stage cascade refrigeration system (also called...

    (100 points) Figure below shows the schematic diagram of a two-stage cascade refrigeration system (also called the Economizer 2-Stage Refrigeration Cycle). Comparing to the cascade two-stage refrigeration system discussed in In-class Activity #10a, in this case, the flash chamber (now called Flash Intercooler) is still used but the mixing chamber is removed. The superheated vapor (2) out of the low-pressure compressor (1) is routed into the flash chamber, and the saturated vapor (3) out of the flash chamber enters directly...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT