Question

Consider the model of a diatomic gas lithium (L.) shown in Figure 9.3. atom Rigid connector (massless) atom Figure 9.3 (a) As

please show the process and answer

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Mass of Lib - 6x Me Mp2 B Mass of Proton or Neutron R = 0.27x10 m (5) Ix = M()+ mre) ? - M.; = 62164 x 16258629 2 = 2109? IxEl = #2 1/4+1) 21 620 1(1+2) 2 Ix E = (1.06X178472_x2 2 x 3.652x1046 E, = 3.076 x1623 Joule @ - 23 E-Learning (4+1) = 3.076X1I hope you understood the problem, If yes then rate me up or else comment for a better solution and do not forget to rate answer.

Add a comment
Know the answer?
Add Answer to:
please show the process and answer Consider the model of a diatomic gas lithium (L.) shown...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In this problem we consider rotational motion of a diatomic molecule such as carbon monoxide or...

    In this problem we consider rotational motion of a diatomic molecule such as carbon monoxide or nitric oxide. We treat a system of two point masses, mi and m2, rotating about their common center of mass. There are no external forces or torques on the system. We are in the center-of-mass frame, so the CM is at the origin. We treat the case of steady rotation, with w pointing in the z direction, and the particles moving in the ry...

  • Please fully answer ALL parts! :-) Thank you so much in advance!! 1) This week, we...

    Please fully answer ALL parts! :-) Thank you so much in advance!! 1) This week, we introduced a new model, the rigid rotor, that can be used to describe rotating molecules. Before we get into problems that describe the quantum properties of a rigid rotor, let's quickly review the classical behavior of a rotating molecule. Consider a single atom with mass m rotating about the origin in a circular orbit with radius r. If the particle's linear momentum is p...

  • Consider a gas of diatomic molecules (moment of inertia I) at an absolute temperature T. If Eg is a ground-state energy...

    Consider a gas of diatomic molecules (moment of inertia I) at an absolute temperature T. If Eg is a ground-state energy and Eex is the energy of an excited state, then the Maxwell-Boltzmann distribution predicts that the ratio of the numbers of molecules in the two states is nexng=e−(Eex−Eg)/kT. The ratio of the number of molecules in the lth rotational energy level to the number of molecules in the ground-state (l=0) rotational level is nln0=(2l+1)e−l(l+1)ℏ2/2IkT. The moment of inertia of...

  • Please answer that question ASAP 1. Consider a disc and hoop both of the same mass...

    Please answer that question ASAP 1. Consider a disc and hoop both of the same mass M, radius R and thickness I. a) Explain why one of these objects has a larger moment of inertia (about an axis through the center of mass and perpendicular to the plane of the object) than the other. What effect does the thickness I have on the rotational inertia? b) Explain how the rotational inertia of the disc may be obtained by adding the...

  • Heres example 10.2 (3) (30 points) In Example 10.2, the moment of inertia tensor for a...

    Heres example 10.2 (3) (30 points) In Example 10.2, the moment of inertia tensor for a uniform solid cube of mass Mand side a is calculated for rotation about a corner of the cube. It also worked out the angular momentum of the cube when rotated about the x-axis - see Equation 10.51. (a) Find the total kinetic energy of the cube when rotated about the x-axis. (b) Example 10.4 finds the principal axes of this cube. It shows that...

  • Please use the formulate sheet and show all steps to make sure the question is worth...

    Please use the formulate sheet and show all steps to make sure the question is worth any points a) The initial ratio of deuterium (D) to hydrogen (H) in a planet's atmosphere was 175000; however, the present ratio is 1/1500 and the initial and final abundances of D are 5 x 10° atoms per m3 and 9 x 106 atoms per m2, respectively. What fraction of deuterium has been lost, and what fraction of hydrogen has been lost in this...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT