Question

Consider the following functions that implement the dequeue operation for a priority queue that is implemented...

Consider the following functions that implement the dequeue operation for a priority queue that is implemented with a heap.

int[] pQueue;

int length;

int dequeue() {

int node = 1;

int value = pQueue[--length];

int maxValue = pQueue[node];

int location = sift(node * 2, value);

pQueue[location] = value; return maxValue;

}

int sift(int node, int value) {

if (node <= length) {

if (node < length && pQueue[node] < pQueue[node + 1])

node++;

if (value < pQueue[node]) {

pQueue[node / 2] = pQueue[node];

return sift(node * 2, value); } }

return node / 2;

}

1. Write the recurrence equation and initial conditions that expresses the execution time cost for the sift function in the above algorithm. Draw the recursion tree assuming that n = 8. Assume that n represents the number of nodes in the subtree at each step of the sifting operation.

2. Determine the critical exponent for the recurrence equation in problem 1. Apply the Little Master Theorem to solve that equation specifically stating which part of the theorem is applied to arrive at the solution.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Consider the following functions that implement the dequeue operation for a priority queue that is implemented...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 5. Consider a priority queue of strings with an integer priority. The queue us implemented as...

    5. Consider a priority queue of strings with an integer priority. The queue us implemented as a min heap using a 0-based array of size 8 with methods push(entry, priority) and pop(). Determine the priority queue contents, represented both as an array and as a tree, at the points indicated below during the following operations on the ADT. Write down the queue contents after the operation on the given line is executed. 1. priority_queue<string, int> pq; 2. pq.push("start", 10); 3....

  • // =================== Support Code ================= // Queue // // // // - Implement each of the functions to create a working circular queue. // - Do not change any of the function declarations // ...

    // =================== Support Code ================= // Queue // // // // - Implement each of the functions to create a working circular queue. // - Do not change any of the function declarations //   - (i.e. queue_t* create_queue(unsigned int _capacity) should not have additional arguments) // - You should not have any 'printf' statements in your queue functions. //   - (You may consider using these printf statements to debug, but they should be removed from your final version) // ==================================================...

  • Language C++ (Please include a short description & Screenshot of output) Implement a Priority...

    Language C++ (Please include a short description & Screenshot of output) Implement a Priority queue using a SORTED list. Use Quick sort after adding a new node. Example of quick sort below. Adopt to your program the code below. #include <iostream> void quickSort(int a[ ], int first, int last); int pivot(int a[], int first, int last); void swap(int& a, int& b); void swapNoTemp(int& a, int& b); void print(int array[], const int& N); using namespace std; int main() { int test[]...

  • Question B1 You are given the following Java classes: public class Queue { private static class...

    Question B1 You are given the following Java classes: public class Queue { private static class Node { Object object; Node next; Node () { object = null; next = null; } Node (Object object, Node next) { this.object = object; this.next = next; private Node header; private int size = 0; // size shows the no of elements in queue public Object dequeue () { if (size == 0 ) { return null; else { Object remove_object = header.object;...

  • C++: PLEASE HELP~!!! ~~~~~~~~ Implement bool AVLTree::deleteNode(string ss) method. Function deleteNode() tries to delete the node...

    C++: PLEASE HELP~!!! ~~~~~~~~ Implement bool AVLTree::deleteNode(string ss) method. Function deleteNode() tries to delete the node containing value ss. If there is no such node, it returns false. Otherwise, it deletes the node, check the balance of the tree, rebalance the tree if it is necessary. When you delete a node, consider three different scenarios: -The node is a leaf -The node has only ONE child subtree -The node has two child subtrees Important: When you implement this project, do...

  • Lab Assignment : In this lab, you are going to implement QueueADT interface that defines a...

    Lab Assignment : In this lab, you are going to implement QueueADT interface that defines a queue. Then you are going to use the queue to store animals. 1. Write a LinkedQueue class that implements the QueueADT.java interface using links. 2. Textbook implementation uses a count variable to keep track of the elements in the queue. Don't use variable count in your implementation (points will be deducted if you use instance variable count). You may use a local integer variable...

  • Introduction In this lab, you are supposed to implement a graph class with the data structure...

    Introduction In this lab, you are supposed to implement a graph class with the data structure implemented before like linked list and queue. graph The class graph contains three member variables: linkedList *adjacentVertices; //an array of linked list. For a vertice i, adjacentVertices[i] stores the linked list that contains all other vertices connected to vertice i. int numVertices; //The number of vertices in the graph. int maxNumVertices; //The maximum number of vertices the graph can hold. Following public methods are...

  • I've posted 3 classes after the instruction that were given at start You will implement and...

    I've posted 3 classes after the instruction that were given at start You will implement and test a PriorityQueue class, where the items of the priority queue are stored on a linked list. The material from Ch1 ~ 8 of the textbook can help you tremendously. You can get a lot of good information about implementing this assignment from chapter 8. There are couple notes about this assignment. 1. Using structure Node with a pointer point to Node structure to...

  • Comparing the insertion and removing performance between ALPQueue with HeapPQueue. Requirements: 1/ Task1: implement a concrete...

    Comparing the insertion and removing performance between ALPQueue with HeapPQueue. Requirements: 1/ Task1: implement a concrete ALPQueue class (an ArrayList based priority queue) that extends the AbstractPQueue discussed in the class, along with PQueue.java, ArrayList.java, List.java, PQEntry.java , EntryComparitor.java, and OutOfRangeException.java given in the class (any other implementation of above classes that are not compatible with List interface and AbstractPQueue class will not receive any credit). 2/ Task2: implement a concrete HeapPQueue class (a Heap based priority queue) that extends...

  • Since we do not want to have to rewrite this code when the element type changes,...

    Since we do not want to have to rewrite this code when the element type changes, this classes uses a Comparator to assist in ordering the elements. You will need to complete the siftUpComparator() and siftDownComparator() methods in the LinkedHeap Class. siftUp §Added element may violate heap-order property §siftUp() restores order starting at added node §Processing will continue working up the tree until: úFinds properly ordered node & parent úReaches the root (reaches node without parent) siftDown §Restores heap’s order...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT