Question

Problem ↑ h[n] 0.5 0.25t r0.25 Consider the impulse response h|n] shown in the figure. (i) Show that the impulse response corresponds to a lowpass filter by determining its magnitude response |H(e ) (ii) What is the phase response of the filter? How can you obtain a linear-phase filter from this hn? (iii) Obtain a three-tap linear-phase highpass filter by suitably modifying the coef- ficients of h|n]. Verify your answer by plotting the magnitude response of the new filter.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem ↑ h[n] 0.5 0.25t r0.25 Consider the impulse response h|n] shown in the figure. (i)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the...

    2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the frequency response H (w) of this system? (b) Find and sketch |H(w) (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = δ(t-2) (This is a delay of 2.) (a) What is the frequency response H (w) of this system? (b) Find and sketch the frequency response...

  • (a) The impulse response hfn of an FIR filter satisfies the following property: h[n]- otherwise where...

    (a) The impulse response hfn of an FIR filter satisfies the following property: h[n]- otherwise where M is an even integer. Derive the filter's frequency response and show that it has a linear phase. Why is linear phase a desired property ? (b) You are asked to design a linear-phase FIR filter. The required pass-band is from 1,000 Hz to 3,000 Hz. The input signal's sampling frequency is 16, 000Hz e the pass-band in the w domain 1. GlV n...

  • Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer func...

    Thanks Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer function H() shown as follow is desired: (4 marks) (3 marks) iii) Based on (a)(ii), determine the truncated impulse response ha(n) for a 5-tap FIR filter by i) Sketch the spectrum of the transfer function H (w). ii) Determine the impulse response h(n) from H() using rectangular window method. (6 marks) iv) Calculate all the filter coefficient of ha (n). (5 marks) Question 3 a)...

  • 2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) -...

    2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) - et u(t). (a) What is the frequency response H (w) of this system? (b) Find and sketch H(w). (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = S(t – 2). (This is a delay of 2.) (a) What is the frequency response H (w) of this...

  • 4. Consider a certain system defined by impulse response h(n) such that calculate the following: i....

    4. Consider a certain system defined by impulse response h(n) such that calculate the following: i. transfer function ii. magnitude response of the filter i phase response of the filter iv. sketch magnitude and phase response of the filter at intervals (π/10) radians (13 Marks) (3 Marks) (3 Marks) (6 Marks)

  • A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] –...

    A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] – 3(0.5)2º u[n] where u[n] is the unit step function. a) Find the z-domain transfer function H(2). b) Draw pole-zero plot of the system and indicate the region of convergence. c) is the system stable? Explain. d) is the system causal? Explain. e) Find the unit step response s[n] of the system, that is, the response to the unit step input. f) Provide a linear...

  • (i) An FIR system has the impulse response hln] = 3?[n 2 . When the signal...

    (i) An FIR system has the impulse response hln] = 3?[n 2 . When the signal a [n] is passed (ii) Consider a signal In] whose DTFT is given by X(es*). What is the DTFT of ii) Suppose hi [n] is the impulse response of an ideal lowpass filter. Which of the options through the system, what is the output, written as a function of rn]? y[n] = x[n-3), written as a function of X(eM)? below is the impulse response...

  • a) The transfer function of an ideal low-pass filter is and its impulse response is where...

    a) The transfer function of an ideal low-pass filter is and its impulse response is where oc is the cut-off frequency i) Is hLP[n] a finite impulse response (FIR) filter or an infinite impulse response filter (IIR)? Explain your answer ii Is hLP[n] a causal or a non-causal filter? Explain your answer iii) If ae-0. IT, plot the magnitude responses for the following impulse responses b) i) Let the five impulse response samples of a causal FIR filter be given...

  • Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine...

    Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine the frequency response of the system. b) Find the magnitude response and the phase response, given a = 1/2. No plots. c) Consider a LTI system whose impulse response h1[n] is a time-shifted version of h[n], i.e., h1[n] = h[n − n0]. Compute the frequency response H1(e^(jΩ)), and represent H1(e^(jΩ)) in terms of H(e^(jΩ)).

  • Problem 2 Consider an FIR filter with the following impulse response: h [n] [1 -2 3]...

    Problem 2 Consider an FIR filter with the following impulse response: h [n] [1 -2 3] (a) What is the gain at 2 0.67 rads/sample? (b) What is the filter output if the input is x(n] - [1 2 3 2 1? Problem 2: Consider an FIR filter with the following impulse response: h(n] [1-2 3 (a) What is the gain at 2 0.67 rads/sample? (b) What is the filter output if the input is x [n] 1 2 3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT