Question

Integrated Rate Laws: Working with First Order Reactions What is the rate constant (min-1) of a...

Integrated Rate Laws:

Working with First Order Reactions What is the rate constant (min-1) of a first order reaction where the concentration of the reactant decreases by one fourth in 28.0 minutes?

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Integrated Rate Laws: Working with First Order Reactions What is the rate constant (min-1) of a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may...

    + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. Slope Order O 1 2 Integrated Rate Law Graph [A] = - kt + [A] [A] vs. t In[A] = -kt + In[A], In[A] vs. t LÀ=kt + TA LÀ vs. t -k Review Constants Periodic Table Part A The reactant concentration in a zero-order reaction was...

  • + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arrang...

    + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. Slope Order O 1 2 Integrated Rate Law Graph [A] = - kt + [A] [A] vs. t In[A] = -kt + In[A], In[A] vs. t LÀ=kt + TA LÀ vs. t -k Review Constants Periodic Table Part A The reactant concentration in a zero-order reaction was...

  • The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...

    The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y=mx+by=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0[A]=−kt+[A]0 [A] vs. t[A] vs. t −k−k 1 ln[A]=−kt+ln[A]0ln⁡[A]=−kt+ln⁡[A]0 ln[A] vs. tln[A] vs. t −k−k 2 1[A]= kt+1[A]01[A]= kt+1[A]0 1[A] vs. t1[A] vs. t kk A.) The reactant concentration in a zero-order reaction was 0.100 MM after 165 ss and 4.00×10−2 MM after 305 ss . What is the...

  • ± Using Integrated Rate Laws Part A The reactant concentration in a zero-order reaction The integrated...

    ± Using Integrated Rate Laws Part A The reactant concentration in a zero-order reaction The integrated rate laws for zero-, first-, and second order reaction may be arranged such that they resemble the equation for a straight line y=mx + b was 9.00x102 M after 155 s and 3.50x102 M after 320 s. What is the rate constant for this reaction? Express your answer with the appropriate units Indicate the multiplication of units, as necessary explicitly either with a multiplication...

  • The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...

    The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y=mx+by=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0[A]=−kt+[A]0 [A] vs. t[A] vs. t −k 1 ln[A]=−kt+ln[A]0ln⁡[A]=−kt+ln⁡[A]0 ln[A] vs. tln[A] vs. t −k 2 1[A]= kt+1[A]01[A]= kt+1[A]0 1[A] vs. t1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2 MM after 130 ss and 4.00×10−2 MM after 380 ss . What is...

  • 14.1 Question 3 Learning Goal: To understand how to use integrated rate laws to solve for...

    14.1 Question 3 Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr×2 hr=110 miles traveled milemarker 145−110 miles=milemarker...

  • HW 4 ± Using Integrated Rate Laws Resources previous | 1 of 11 | next» ±...

    HW 4 ± Using Integrated Rate Laws Resources previous | 1 of 11 | next» ± Using Integrated Rate Laws Part A The integrated rate laws for zero-, first-, and second- order reaction may be arranged such that they resemble the equation for a straight line y=mx + b Mafter 125 s and 3.00x10 M The reactant concentration in a zero-order reaction was 6.00x10 after 305 s. What is the rate constant for this reaction? Express your answer with the...

  • Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car...

    Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr×2 hr=110 miles traveled milemarker 145−110 miles=milemarker 35 If we...

  • ing Integrated Rate Laws < 10 of 11 > Review Constants Periodic Table ne integrated rate...

    ing Integrated Rate Laws < 10 of 11 > Review Constants Periodic Table ne integrated rate laws for zero, first- and second-order eaction may be arranged such that they resemble the equation or a straight line, ymr + b Part A Order 0 Integrated Rate Law Graph Slope [A] = - kt +(Alo (A) vs. t -k In A-kt+In Al In A vs. t -k Avst k 1 The reactant concentration in a zero order reaction was 8.00-10-2 Mafter 160...

  • The rate constant k for a certain first-order reaction is 0.60 min–1. What is the initial...

    The rate constant k for a certain first-order reaction is 0.60 min–1. What is the initial rate, if the initial concentration of the reactant is 0.10 M?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT