Question

two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with...

two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.61 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.470. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?

10.33 kg

2.94 kg

3.11 kg

18.69 kg

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A block of mass m1 rests on a frictionless inclined plane as shown. The inclined plane,...

    A block of mass m1 rests on a frictionless inclined plane as shown. The inclined plane, which has mass m2, rests on a frictionless floor. Find the accelerations of both blocks with respect to the inertial reference frame provided by the floor. Hint: there are several different ways of doing this problem. You may write the equation of motion of the top block in the accelerating reference frame of the bottom block. You may instead write everything in an inertial...

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • In the figure below, two blocks are connected over a pulley. The mass of block A...

    In the figure below, two blocks are connected over a pulley. The mass of block A is 22 kg 3. and the coefficient of kinetic friction between A and the incline is i* =028. The mass of block B is 18 kg. Angle 0 is 30°. The system is prepared at rest but it starts moving as soon as it is released Frictionless massless pulley Assume that The system is subject to the regular force of gravity. The connecting rope...

  • Monash College MCD 4270 Engineering Design Informal Assessment 10: (Sem1 2016) Name ID Number: As shown in igure 6 below, a block of mass 3 kg sits on a ramp that is inclined at an angle of S0 deg...

    Monash College MCD 4270 Engineering Design Informal Assessment 10: (Sem1 2016) Name ID Number: As shown in igure 6 below, a block of mass 3 kg sits on a ramp that is inclined at an angle of S0 degrees to the horizontal. On top of this block rests another block of mass 2 kg. The two blocks are connected by a cord that passes over a frictionless pulley. The coefficient of static friction between all surfaces (i.e., between the two...

  • Two blocks are connected by a massless rope slung over a massless, frictionless pulley at the...

    Two blocks are connected by a massless rope slung over a massless, frictionless pulley at the edge of a table. One block moves horizontally along the tabletop; it has a mass of 8.00 kg. The other block is freely-hanging off the edge of the pulley; it has a mass of 6.00 kg. Initially, both blocks have a speed of 0.900 m/s; the blocks come to rest after they have moved 2.00 m. What is the coefficient of kinetic friction between...

  • In the figure below, two blocks are connected over a pulley. The mass of block A...

    In the figure below, two blocks are connected over a pulley. The mass of block A is 32 kg, and the coefficient of kinetic friction between A and the incline is 0.16. Angle θ is 30°. Block A slides down the incline at constant speed. What is the mass of block B? Assume the connecting rope has negligible mass. (The pulley's function is only to redirect the rope.) kg Frictionless massless pulley

  • Rope between inclines A rope rests on two platforms which are both inclined at an angle...

    Rope between inclines A rope rests on two platforms which are both inclined at an angle θ (which you are free to pick), as shown. The rope has uniform mass density, and its coefficient of friction with the platforms is 1. The system has left-right symmetry. What is the largest possible fraction of the rope that does not touch the platforms? What angle θ allows this maximum value?

  • Two blocks are connected by a cord passing over a small (frictionless) pulley as shown below....

    Two blocks are connected by a cord passing over a small (frictionless) pulley as shown below. The angle = 30 degrees, and the mass of the small block is m = 15 kg. If the coefficient of friction between the small block and the inclined plane is 0.25 and the large block is accelerating down at 2 m/s2 , what is the mass, M, of the large block? Two blocks are connected by a cord passing over a small (frictionless)...

  • Two blocks are connected by a string that goes over an ideal pulley as shown in...

    Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block m1 has a mass of 2.02 kg and can slide over a rough plane inclined 27° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.389. Block B has a mass of 4.47 kg. What is the acceleration of the blocks?

  • Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg...

    Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg is at rest on a plane inclined at Theta = 35.0 degree above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2 = 26.1 kg. as shown in the figure. The coefficients of static and kinetic friction between block 1 and the inclined plane Is MU_s is unknown. If the blocks are released...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT