Question

two thin lenses are separated by a distance x. The first lens has a focal length...

two thin lenses are separated by a distance x. The first lens has a focal length of 10cm, the second has a focal length of 5cm. An object is placed 15cm in front of the first lens which forms an image between the lenses. Find the separation between the lenses given that the final image is formed 10 cm behind the second lens. Please use pictures and show all steps.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
two thin lenses are separated by a distance x. The first lens has a focal length...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two converging lenses are separated by a distance of 20 cm. The first lens has a...

    Two converging lenses are separated by a distance of 20 cm. The first lens has a focal length of 5 cm and the second lens has an unknown focal length that you need to calculate. When an object is placed 8 cm in front of the first lens you measure a total magnification of M=-1.8 (That is, the magnification caused by the two lenses). Answer the following questions: 1. location of the image found by the first lens 2. magnification...

  • Two lenses are placed on an optical axis. The first lens is a has a focal...

    Two lenses are placed on an optical axis. The first lens is a has a focal length of fı = -9.0 cm and the second lens has a focal length of f2 = 16 cm. The two lenses are separated by 24 cm. A 4 cm tall object is placed 5 cm in front of the first lens. “In front of means it is not between the lenses. a) Draw a picture of the setup b) Find the image position...

  • Two lenses are placed on an optical axis. The first lens is a has a focal...

    Two lenses are placed on an optical axis. The first lens is a has a focal length of f1 = -9.0 cm and the second lens has a focal length of f2 = 16 cm. The two lenses are separated by 24 cm. A 4 cm tall object is placed 5 cm in front of the first lens. “In front of means it is not between the lenses. a) Draw a picture of the setup b) Find the image position...

  • Two lenses are placed on an optical axis. The first lens is a has a focal...

    Two lenses are placed on an optical axis. The first lens is a has a focal length of fi = -9,0 cm and the second lens has a focal length of f = 16 cm. The two lenses are separated by 24 cm. A 4 cm tall object is placed 5 cm in front of the first lens. "In front of means it is not between the lenses. a) Draw a picture of the setup b) Find the image position...

  • Two positive thin lenses are separated by a distance of d. The focal lengths of the...

    Two positive thin lenses are separated by a distance of d. The focal lengths of the lenses are f_1 = 10 cm and f_2 = 20 cm. The desired throw of the system, the object to image distance, is T = 80 cm and the desired magnification is M = -1.1. a) Use what you know about the conjugate matrix for a two lens system to solve to the distance between the lenses. Express your answer in cm. b) Where...

  • An object is placed 6.0 cm in front of a lens of focal length 5.0 cm....

    An object is placed 6.0 cm in front of a lens of focal length 5.0 cm. Another lens of focal length 4.0 cm is placed 2.4 cm behind the first lens. (a) Where is the final image? distance cm location ---Select--- behind the second lens in front of the second lens, but between lenses in front of the first lens Is the image real or virtual? virtualreal     (b) What is the overall magnification?

  • An object is located to the left of two lenses that are separated by a distance...

    An object is located to the left of two lenses that are separated by a distance of 40 cm. The object is located at p1 = 45 cm in front of the first (diverging) lens with a -30 cm focal length, as sketched by an arrow in the figure below. The final image created by the two lenses is located 8.6 cm to the right of the second lens. (a) Clearly draw in the space below at least two of...

  • 9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23...

    9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23.0 cm, and the second lens has focal length 2 47.0 cm. An image is formed by light passing through both lenses at a distance = 12.0 cm to the left of the second lens. Include the sign of the value in your...

  • Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and...

    Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and the second converging, are located 14.3 cm apart. An object 2.90 mm tall is placed 31.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted?

  • Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

    Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 2.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens. A) How far from this first lens is the final image formed? B)Is the final image real or virtual? C) What is the height of the final image? in cm.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT