Question

Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 2.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens.

A) How far from this first lens is the final image formed?

B)Is the final image real or virtual?

C) What is the height of the final image? in cm.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

d = 76.64+15.8cm - 12.44600) - Apply love cauch in 4-13-125 cm P₂ = 15.8 + 13.125 - 28.9250m +2 42.276.64 cm fined Imas a seu

Add a comment
Know the answer?
Add Answer to:
Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

    Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 3.50 mm tall is placed 35.0 cm to the left of the first (diverging) lens. 1)How far from this first lens is the final image formed? Express your answer in centimeters. 2)Is the final image real or virtual? 3)What is the height of the final image? Express your answer in millimeters. 4)Is it upright or...

  • Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm,...

    Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 3.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Express your answer in centimeters. IVO AZO ? cm Submit Request Answer Part B Is the final image real or virtual? O virtual What...

  • Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and...

    Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and the second converging, are located 14.3 cm apart. An object 2.90 mm tall is placed 31.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted?

  • Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second...

    Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second converging, are placed 11.00 cm apart. An object 3.70 mm tall is placed 4.75 cm to the left of the first (diverging) lens. (a) Where is the image formed by the first lens located? (b) How far from the object is the final image formed? (c) Is the final image real or virtual? (d) What is the height of the final image? (e) Draw...

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • 2. Two thin lenses, one a converging lens and the other a diverging lens, are arated...

    2. Two thin lenses, one a converging lens and the other a diverging lens, are arated by 1.00 m along the same principal axis, as shown in the figure. The magnitude of the focal length of the converging lens is 25 cm, while the magnitude of the focal length of the diverging lens is 40 em. An object 8,25 cm tall is placed 35 cm to the left of the converging lens. (a) Where is the final image produced by...

  • Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm,...

    Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm, are placed 50.0 cm apart (converging lens to the left), and a 5.0 cm tall object is placed 30.0 cm in front of the converging lens. a. Draw a diagram which shows the lenses, the object, the intermediate image, and the final image. This does NOT need to be a ray diagram! b. Determine position and height of the final image.

  • Two lenses, one converging with a focal length of 17.2 cm and one diverging with focal...

    Two lenses, one converging with a focal length of 17.2 cm and one diverging with focal length 11.8 cm are placed 31 cm apart. a book 15.2 cm tall is placed 52.1 cm in front of the converging lens. Determine a)the position, b) the magnification c) the size d)orientation e)real or virtual f) the power of each lens.

  • Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0...

    Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0 cm are placed 20 cm apart. An object is placed 60 cm in front of converging lens. Determine (a) the position and (b) the magnification of the final image formed (c) sketch a ray diagram for this system.

  • Two lenses are placed 13 cm apart. The first lens is a converging lens with focal...

    Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? B) What is the image type (virtual or real)? C) What is the magnification?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT