Question

Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 3.50 mm tall is placed 35.0 cm to the left of the first (diverging) lens.

1)How far from this first lens is the final image formed? Express your answer in centimeters.

2)Is the final image real or virtual?

3)What is the height of the final image? Express your answer in millimeters.

4)Is it upright or inverted?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

15.8cm a 35um ist 2nd For the first lens ti -21, ų= -35 cm (on left) 80, using rene formula ti to 10-13 af 73 I 35 =- + 21 35(28.925) ta - ġ - 26.925 28.925-21 (28.925) (21) 7.925 607-425 Na - 76.646 cm of distance final Image = 15.8+ V from ist leneNow, magnification, ma height of Image height of object height of mage -0.993 3.50mm Height of = Final Image -0.993) (3.50) -

Add a comment
Know the answer?
Add Answer to:
Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm,...

    Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 3.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Express your answer in centimeters. IVO AZO ? cm Submit Request Answer Part B Is the final image real or virtual? O virtual What...

  • Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

    Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 2.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens. A) How far from this first lens is the final image formed? B)Is the final image real or virtual? C) What is the height of the final image? in cm.

  • Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and...

    Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and the second converging, are located 14.3 cm apart. An object 2.90 mm tall is placed 31.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted?

  • Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second...

    Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second converging, are placed 11.00 cm apart. An object 3.70 mm tall is placed 4.75 cm to the left of the first (diverging) lens. (a) Where is the image formed by the first lens located? (b) How far from the object is the final image formed? (c) Is the final image real or virtual? (d) What is the height of the final image? (e) Draw...

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • 2. Two thin lenses, one a converging lens and the other a diverging lens, are arated...

    2. Two thin lenses, one a converging lens and the other a diverging lens, are arated by 1.00 m along the same principal axis, as shown in the figure. The magnitude of the focal length of the converging lens is 25 cm, while the magnitude of the focal length of the diverging lens is 40 em. An object 8,25 cm tall is placed 35 cm to the left of the converging lens. (a) Where is the final image produced by...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are...

    Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 33.3 cm Indicated. 12 Object Final image (5) How far (in cm) to the left of the first lens should the object be positioned? cm (b) What is the overall magnification of the system? (c) is the...

  • Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36...

    Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36 cm. An object is 22 cm to the left of the first lens. a) Findthe position of the final image using both a ray diagram and the thin-lens equation. cm to the right of the object (b) Is the final image real or virtual? O real O virtual Is the final image upright or inverted? O upright O inverted (c) What is the overall...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT