Question

Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converWhat is the height of the final image? Express your answer in millimeters. Η ΑΣφ ? FRA mm Submit Request Answer Part D Is it

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Part A The lens equation is 12 th to ( fa 1 dem) | for 11t leur Uz - 13.125 um -2) 35 distance the and lem. 13.125+15.8cm ob

Add a comment
Know the answer?
Add Answer to:
Review | Constants Part A Two thin lenses with a focal length of magnitude 21.0 cm,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

    Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 3.50 mm tall is placed 35.0 cm to the left of the first (diverging) lens. 1)How far from this first lens is the final image formed? Express your answer in centimeters. 2)Is the final image real or virtual? 3)What is the height of the final image? Express your answer in millimeters. 4)Is it upright or...

  • Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the...

    Two thin lenses with a focal length of magnitude 21.0 cm, the first diverging and the second converging, are located 15.8 cm apart. An object 2.00 mm tall is placed 35.0 cm to the left of the first (diverging) lens. A) How far from this first lens is the final image formed? B)Is the final image real or virtual? C) What is the height of the final image? in cm.

  • Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and...

    Two thin lenses with a focal length of magnitude 19.0 cm , the first diverging and the second converging, are located 14.3 cm apart. An object 2.90 mm tall is placed 31.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted?

  • A converging lens has a focal length of 13.0 cm. For each of two objects located...

    A converging lens has a focal length of 13.0 cm. For each of two objects located to the left of the lens, one at a distance of 81 = 18.5 cm and the other at a distance of S2 = 6.50 cm , determine the following. Part A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Image formed by a diverging lens. Determine the image position. Express your answer in centimeters separated...

  • Two lenses, one converging with focal length 20.0 cm and one diverging with focal length 10.0...

    Two lenses, one converging with focal length 20.0 cm and one diverging with focal length 10.0 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. OD Å ? di2 = 1 cm Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second...

    Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second converging, are placed 11.00 cm apart. An object 3.70 mm tall is placed 4.75 cm to the left of the first (diverging) lens. (a) Where is the image formed by the first lens located? (b) How far from the object is the final image formed? (c) Is the final image real or virtual? (d) What is the height of the final image? (e) Draw...

  • A converging lens with a focal length of 5.0 cm is to the left of a...

    A converging lens with a focal length of 5.0 cm is to the left of a second identical lens. When a feather is placed 13 cm to the left of the first lens, the final image is the same size and orientation as the feather itself. Part A What is the separation between the lenses? Express your answer using two significant figures. IVO ΑΣΦ ? cm Submit Request Answer

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT