Question

uestion l [use R= 0.287 kJ/kg K, c,-1.0035 kJ/kg K1 a) Air flowing at a rate of 1.6 kg/min is compressed by a 5 kW compressor under steady-state conditions, from 100 kPa and 17°C to 600 kPa and 167°C. During this process, some heat transfer takes place between the compressor and the surrounding medium at 17°C. Determine the rate of entropy change of air during this process, stating clearly any assumptions. (5 Marks)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

100メ hitQ - hatW Yi b+22 3 683 x loKlk

Add a comment
Know the answer?
Add Answer to:
uestion l [use R= 0.287 kJ/kg K, c,-1.0035 kJ/kg K1 a) Air flowing at a rate...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • P1) (50 points) - Air is compressed steadily by a 7.5-kW compressor. Air enters a compressor...

    P1) (50 points) - Air is compressed steadily by a 7.5-kW compressor. Air enters a compressor at a pressure of 100 kPa, a temperature of 290 K and a velocity of 6 m/s through an inlet with an area of 0.005 m2. At the exit, the pressure is 700 kPa, the temperature 480 K and the velocity is 2 m/s. Determine: a) heat transfer that takes place between the compressor and the surrounding medium at 290 K, in kW and...

  • Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained const...

    Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained constant at 21°C during this process as a result of heat transfer to the surrounding medium at 10°C. Determine the rate of entropy change of the air. AS- kW/K (Round to five decimal places.) Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained constant at 21°C during this process as a result of heat transfer to the...

  • 5. A compressor takes air from the atmosphere, which is at 100 kPa and 17 °C,...

    5. A compressor takes air from the atmosphere, which is at 100 kPa and 17 °C, and compresses it to 500 kPa. The compressor is cooled at a rate of 100 kJ / kg of air throughput and the heat rejected to the surrounding air. Irreversibilities in the compressor increase the entropy of the air flowing through it by 0.2 kJ / kg. Calculate the work done and the entropy generated per unit mass of air.

  • Air at 108 kPa and 20 oC is compressed steadily by a 5.3 kW compressor to...

    Air at 108 kPa and 20 oC is compressed steadily by a 5.3 kW compressor to 620 kPa and 170 oC . The mass flow rate of air is 1.55 kg/min. The surrounding temperature or the ambient temperature is 17 oC. Calculate the loss of available energy or exergy destroyed in kW. Assume Cp of air as 1.005 kJ/kg K and gas constant R as 0.287 kJ/kg K . Remember to change temperatures to the Kelvin scale. (Hint: Here entropy...

  • 1)(Hint: Cp=1.005 kJ/kg-K, Cv=0.718 kJ/kg-K, R=0.287 kJ/kg-K). An air-tight room contains 80 kg of air, and...

    1)(Hint: Cp=1.005 kJ/kg-K, Cv=0.718 kJ/kg-K, R=0.287 kJ/kg-K). An air-tight room contains 80 kg of air, and a 2-kW baseboard electric resistance heater in the room is turned on and kept on for 15 min. The temperature rise of air at the end of 15 min is 2)An example of when it is appropriate to model a substance as an ideal gas is when a. The pressure and temperature are close to the critcal point b. The pressure and temperature are...

  • Air is compressed by a 34.6 kW compressor from P1 to P2. The air temperature is...

    Air is compressed by a 34.6 kW compressor from P1 to P2. The air temperature is maintained constant at 34°C during this process as a result of heat transfer to the surrounding medium at 15°C. Determine (a) the rate of entropy change of the air, (b) the rate of entropy change of the surroundings, and (c) the rate of entropy generation. State the assumptions made in solving this problem. To check your work, enter the rate of entropy generation, in...

  • 1. 6. An adiabatic, steady state air compressor compresses 10 L/S of air at 120 kPa...

    1. 6. An adiabatic, steady state air compressor compresses 10 L/S of air at 120 kPa and 20 C to 1000 kPa and 300 C. Determine: (a) the mass flow rate of the air in kg/s (b) the power required to drive the air compressor, in kW. Air; c 1.018 kJ/kg K, the gas constant R 0.287 kPa.m/kg.K 1 MPa 300°C Compressor 120 kPa 20°C 101/s

  • 100 kg/hr of air is compressed from 110 kPa and 255 K (where it has an...

    100 kg/hr of air is compressed from 110 kPa and 255 K (where it has an enthalpy of 489 kJ/kg) to 1000 kPa and 278 K (where it has an enthalpy of 509 kJ/kg). The exit velocity of the air from the compressor is 60 m/s. The inlet velocity is very small and can be neglected. The process is adiabatic and there is no change in height during the process. a) Label all known information on the diagram. State if...

  • 03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with...

    03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 °C, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K Determine the power input to the compressor, kW.

  • Is this process possible and why? 73 Air at 500 kPa, 980 K enters a turbine...

    Is this process possible and why? 73 Air at 500 kPa, 980 K enters a turbine operating at steady state and exits at 200 kPa, 680 K. Heat transfer from the turbine occurs at an average outer surface temperature of 320 K at the rate of 40 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. For air as an ideal gas with c, 1.5 kJ/kg K, determine (a) the rate power is developed in kJ...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT