Question

Given a 3-transmission line with a series impedance z 0.17+ jo.79 2/mile, and a shunt admittance y j2.10*mile The line is 150 mile long, and delivers to the load (receiving-end) 15 MW at 132 kV, at a power factor PF1. Assume medium length line, and calculate the power angle 012 between the sending-end voltage and the receiving-end voltage.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sorution:- Given tha iength - 150 mil Re 72.89上2584 1u8:075 (26.52 enact evn COS2] + neglected 3, need 2 2 2 B 148 o75 6 52fi4 148 075 1762419 13

Add a comment
Know the answer?
Add Answer to:
Given a 3-transmission line with a series impedance z 0.17+ jo.79 2/mile, and a shunt admittance...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the...

    Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the ABCD parameters (a) 20% (b)A 200 km, 230 kV, 50 Hz three-phase overhead transmission line has a positive-sequence series impedance z (0.08 + j0.48) Ω/km, and a positive-sequence shunt admittance y-j3.33 x 10T° S/km. At full load, the line delivers 250 MW at 0.99 power factor lagging...

  • A three-phase transmission line is 200 km long. lt has a total series impedance of 25+j110)Ω...

    A three-phase transmission line is 200 km long. lt has a total series impedance of 25+j110)Ω Per Phase and a total shunt admittance ofj5x 10 Ω. It delivers 180 MW at 275 kV and 0.8 power factor lagging to a load connected at the receiving end. Using the medium π model of the line, determine the voltage, current, real power, reactive power and power factor at the sending end of the line.

  • Question: A three-phase, 60-Hz, completely transposed transmission line has a length of 100-km and has a...

    Question: A three-phase, 60-Hz, completely transposed transmission line has a length of 100-km and has a series impedance per phase of (0.25+j0.85) ohms/mile and shunt admittance of 5.0*10^-5 Siemens/mile. The transmission line delivers 150 MW at 0.85 lagging power factor to a load connnected to its receiving end. The line-to-line voltage at the receiving end is 138-kV. Note: The Medium Length Line method should be used since it is used for distances between 50 miles to 150 miles. Determine the...

  • A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2...

    A 230-kV, three-phase transmission line has a per phase series impedance of z = 0.05j0.45 2 per km and a per phase shunt admittance ofy = j3.4 x 10-6 siemens per km. The line is 80 km long. Using the nominal r model, determine (a) The transmission line ABCD constants. Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers (b) 200 MVA, 0.8 lagging power factor at 220...

  • A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km...

    A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km and a per phase shunt admittance of y= j3.4x10^-6 siemens per km. The line is 80km long. Using the medium line pi model: (a) Determine the transmission line model constants A, B, C, and D (b) Find the sending end (generating) voltage, current and power when the line delivers to a load of 1. 200 MVA with 0.8 lagging power factor at 220 kV...

  • A 50-Hz, three-phase transmission line is 300 km long. It has a total series impedance of...

    A 50-Hz, three-phase transmission line is 300 km long. It has a total series impedance of 23 + j75 Ohms and a shunt admittance of j500 µS. It delivers 50 MW at 220 kV, with a power factor of 0.88 lagging. Find the voltage at the sending end using: 1) the short line approximation. 2) the medium-length approximation. 3) the long line equation. How accurate are the short- and medium-length approximations for this case?

  • 48. The 138-kV3ф line described in Problem 4.1 is 150 mi long and is delivering 15 MW at 132 kV a...

    48. The 138-kV3ф line described in Problem 4.1 is 150 mi long and is delivering 15 MW at 132 kV at a 100% power factor. Find the sending-end voltage and current, the power angle θ12 (i.e.,. Vie-La), and the transmission efficiency. Use the long-line model. 0.17-10.79A/mi and 41. Given a 138-kV three-phase line with series impedance z shunt admittance y j5.4 x 10 mho/mi, find the characteristic impedance Z, the propagation constant γ, the attenuation constant a, and the phase...

  • Show the solution for the following problem 1. A short, 230 kV transmission line has an...

    Show the solution for the following problem 1. A short, 230 kV transmission line has an impedance of 5 cis 78 ohms. The load at the receiving end is 100 MW at 230 kV, 85% lagging power factor. What is the voltage at the sending end? a. 235.43 kV b. 226.3 kV c. 231.78 kV d. 238.21 kV 2. A 66 kv medium length transmission line delivers a load of 10 MW at 66 kv and 80% lagging P.F. the...

  • Question 2 (a) Define the term "surge impedance loading". [2 marks] (b) Prove that when the...

    Question 2 (a) Define the term "surge impedance loading". [2 marks] (b) Prove that when the loss less line delivers load equal to the surge impedance loading voltages at both ends of the line are equal in magnitude. [4 marks) (c) A 400 kV, 50 Hz, 300 km transmission line delivers 700 MW at 0.85 power factor lagging. Parameters of the line are given below; Series impedance : z=(0.025+j0.3) 22/km Shunt admittance : y=(j4x106) s/km i. If the voltage at...

  • PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase ...

    PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT