Question

A spherical capacitor contains a charge of 5.00 nC when connected to a potential difference of...

A spherical capacitor contains a charge of 5.00 nC when connected to a potential difference of 220 V. Its plates are separated by vacuum and the inner radius of the outer shell is 2.10 cm. (a) Calculate the capacitance. (b) Calculate the radius of the inner sphere. (c) Calculate the electric field (magnitude) just outside the surface of the inner sphere. Ans:- 22.7pF, 1.9 cm, 1.24e+05 N/C

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A spherical capacitor contains a charge of 5.00 nC when connected to a potential difference of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spherical capacitor contains a charge of 3.50 nC when connected to a potential difference of...

    A spherical capacitor contains a charge of 3.50 nC when connected to a potential difference of 250 V. If its plates are separated by vacuum and the inner radius of the outer shell is 4.00 cm. Calculate the capacitance. Calculate the radius of the inner sphere. Calculate the electric field just outside the surface of the inner sphere.

  • A spherical capacitor contains a charge of 3.40 nC when connected to a potential difference of...

    A spherical capacitor contains a charge of 3.40 nC when connected to a potential difference of 200.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 5.00 cm. Part A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of A spherical capacitor. Calculate the capacitance. Express your answer in picofarads. IVO ASO ? C = pF Submit Previous Answers Request Answer X Incorrect; Try Again; 29...

  • QUESTION 3 A spherical capacitor contains a charge of 3.3 nC when connected to a potential...

    QUESTION 3 A spherical capacitor contains a charge of 3.3 nC when connected to a potential difference of 234 V. If its plates are separated by vacuum and the inner radius of the outer shell is 4.9 cm, calculate the radius of the inner sphere. (Give your answer in decimal using cm as unit)

  • Exercise 24.11 - Enhanced - with Solution A spherical capacitor contains a charge of 3.10 nC...

    Exercise 24.11 - Enhanced - with Solution A spherical capacitor contains a charge of 3.10 nC when connected to a potential difference of 250.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 4.50 cm. Part A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of A spherical capacitor. Calculate the capacitance. Express your answer in picofarads. Templates Symbols undo redo adet keyboard shortcuts help pF...

  • A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The...

    A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The inner sphere has a radius of rarar_a = 12.0 cm, and the outer sphere has a radius of rbrbr_b = 14.8 cm. A potential difference of 120 VV is applied to the capacitor. a. What is the capacitance of the capacitor? Use ϵ0ϵ0epsilon_0 = 8.85×10−12 F/mF/m for the permittivity of free space. b. What is the magnitude E1 of the electric field E at...

  • A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner...

    A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of ra = 12.4 cm , and the outer sphere has a radius of rb = 14.9 cm . A voltage of 120 V is applied to the capacitor. a) What is the capacitance of the capacitor? Use ϵ0 = 8.85×10−12 F/m for the permittivity of free space b) What is the magnitude E1 of the electric field E⃗  at radius...

  • Please answer 1-3 A spherical capacitor is formed from two concentric spherical conducting shells separated by...

    Please answer 1-3 A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of ra = 12.1 cm , and the outer sphere has a radius of rb = 15.1 cm . A potential difference of 120 V is applied to the capacitor. 1. What is the capacitance of the capacitor? Use ϵ0 = 8.85×10−12 F/m for the permittivity of free space. 2.What is the magnitude E1 of the electric...

  • A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum.

    A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum. The inner sphere has a radius of 15.0 cm and the capacitance of the device is 116 pF.  a) What is the radius of the outer sphere?  b) If the potential difference between the two spheres is 220 V, how much energy is stored in this capacitor?

  • We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius...

    We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius b and an outer spherical shell of given radius a. We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius b and an outer spherical shell of given radius a. We want the capacitor to be able to store the greatest amount of electrical energy subject to the constraint that the electric field strength at the surface of...

  • consider two thin conducting spherical shells as shown in the figure 9 Consider two thin, conducting,...

    consider two thin conducting spherical shells as shown in the figure 9 Consider two thin, conducting, spherical shells as shown in the figure. The inner shell has a radius n=15.0 cm and a charge of 10.0 nC. The outer shell has a radius rz=30.0 cm and a charge of 15.0 nC. Find (a) the electric field E and (b) the electric potential V in regions A, B, and C, with V=0 at-o. 0 An air-filled capacitor consists of two parallel...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT