Question

Consider the single degree-of-freedom (DOF) dynamic system whose EOM is shown below: a. Find the natural frequency, damping ratio, and stiffness. b. Find the complete response when the initial conditions are y(0) 0, (0)-1 c. Compare the answers from mathematical software (eg. Matlab or Mathematica). Plot the responses from 0 to 10 seconds (both displacement and velocity) with the software. Append the software codes.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider the single degree-of-freedom (DOF) dynamic system whose EOM is shown below: a. Find the natural...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

  • Can I get help with this 2. (20 points) The damped single degree-of-freedom mass-spring system shown...

    Can I get help with this 2. (20 points) The damped single degree-of-freedom mass-spring system shown below has a mass m- 20 kg and a spring stiffness coefficient k 2400 N/m. a) Determine the damping coefficient of the system, if it is given that the mass exhibits a response with an amplitude of 0.02 m when the support is harmonically excited at the natural frequency of the system with an amplitude Yo-0.007 m b) Determine the amplitude of the dynamic...

  • Model for Evaluation The model used for evaluation is the single degree of freedom lumped mass mo...

    Model for Evaluation The model used for evaluation is the single degree of freedom lumped mass model defined by second order differential equation with constant coefficients. This model is shown in Figure 1. x(t)m m f(t) Figure 1 - Single Degree of Freedom Model The equation of motion describing this system can easily be shown to be md-x + cdx + kx = f(t) dt dt where m is the mass, c is the damping and k is the stiffness...

  • The single degree of freedom model of a vehicle shown below will be used to obtain...

    The single degree of freedom model of a vehicle shown below will be used to obtain a first approximation of the dynamic behavior of the entire vehicle. The mass m of the vehicle is 1200 kg when fully loaded and 400 kg when empty. The spring constant k is 400 kN/m and the damping ratio ζf is 0.4 when the vehicle is fully loaded. The vehicle is traveling at 100 km/h over a road whose surface has a sinusoidally varying...

  • path Wordsso QUESTION 7 A single degree of freedom system is excited by a harmonic force...

    path Wordsso QUESTION 7 A single degree of freedom system is excited by a harmonic force with amplitude 167 N at the frequency ratio 0.9. The amplitude of response is measured as 0.05 m. If the equivalent stiffness of the system is 12 kN/m, calculate the damping ratio of this system. Give your answer with 3 digits after the decimal point. Click Save and submit to save and submit. Click Save answers to save all answers e 9 0 *...

  • 1. Consider the two degree of freedom system shown. (a) Find the natural frequencies for the system (b) Determine the modal fraction for each mode. (c) Draw the mode shapes for each mode and iden...

    1. Consider the two degree of freedom system shown. (a) Find the natural frequencies for the system (b) Determine the modal fraction for each mode. (c) Draw the mode shapes for each mode and identify any nodes for each mode. (d) Demonstrate mode shape orthogonality. (e) If F- and the motion is initiated by giving the mass whose displacement is a velocity of 0.2 m/s when in equilibrium, determine 0) and ,0 (f) Determine the steady-state solution for both *)...

  • 1.- Starting from the differential equation for a 1-degree of freedom system with mass M, damping...

    1.- Starting from the differential equation for a 1-degree of freedom system with mass M, damping c and spring stiffness k: a.- Show that the particular solution for the equation with an applied force fo cos(ot), i.e., Mä+ci+kx=f, cos(or) can be expressed as x )= A cos(ot) + A, sin(or) and find the values of A, and A, that solve the differential equation in terms of M, c, k and fo. 5 points. b. Use the result from part a...

  • solve by matlab The damping system has a single degree of freedom as follows: dx2 dx...

    solve by matlab The damping system has a single degree of freedom as follows: dx2 dx mo++ kx = F(t) dt dt The second ordinary differential equation can be divided to two 1sorder differential equation as: dx dx F C k xí -X2 -X1 dt dt m m m = x2 ,x'z m N F = 10, m = 5 kg k = 40, and the damping constant = 0.1 The initial conditions are [00] and the time interval is...

  • using matlab The damping system has a single degree of freedom as follows: dx2 dx m++...

    using matlab The damping system has a single degree of freedom as follows: dx2 dx m++ kx = + kx = F(t) dt dt The second ordinary differential equation can be divided to two 1st order differential equation as: dx dx F с k x1 = = x2 ,X'2 X2 -X1 dt dt m m m m N F = 10, m = 5 kg k = 40, and the damping constant = 0.1 The initial conditions are [0 0]...

  • By referring to Figure Q2, a vehicle is modeled as a single-degree-of-freedom system vibrating in the...

    By referring to Figure Q2, a vehicle is modeled as a single-degree-of-freedom system vibrating in the vertical direction. It is driven along a road whose profile varies sinusoidally. The distance from peak to trough is 0.20 m and distance along the road between the peaks in 37 m. If the natural frequency of the vehicle is 2.10 Hz and damping ratio of shock absorbed is 0.18 (a) Determine the amplitude of vibration of the vehicle at a speed of 55 km/hr. (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT