Question
solve by matlab

The damping system has a single degree of freedom as follows: dx2 dx mo++ kx = F(t) dt dt The second ordinary differential eq
0 0
Add a comment Improve this question Transcribed image text
Answer #1

clc;clear all;close all;
T=0:0.01:24;%time 0 to 24sec with the increment of 0.01
m=5;k=40;c=0.1;F=10;
fun=@(t,x)[x(2);(F/m)-(c/m)*x(2)-(k/m)*x(1)];%first order differential euation function
IC=[0;0];%initial condition
[t,y] = ode45(fun,T,IC);
%ploting
plot(t,y(:,1));
xlabel('time in sec')
ylabel('Displacement in m')

0.5 0.45 0.4 0.35 0.3 Displacement in m 0.25 0.2 0.15 0.1 0.05 5 20 25 10 15 time in sec

Add a comment
Know the answer?
Add Answer to:
solve by matlab The damping system has a single degree of freedom as follows: dx2 dx...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • using matlab The damping system has a single degree of freedom as follows: dx2 dx m++...

    using matlab The damping system has a single degree of freedom as follows: dx2 dx m++ kx = + kx = F(t) dt dt The second ordinary differential equation can be divided to two 1st order differential equation as: dx dx F с k x1 = = x2 ,X'2 X2 -X1 dt dt m m m m N F = 10, m = 5 kg k = 40, and the damping constant = 0.1 The initial conditions are [0 0]...

  • Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described...

    Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described by the following ordinary differential equation: d’x dx ++ kx = 0 m dr dt where x = displacement from equilibrium position (m), t = time (s), m 20-kg mass, and c = the damping coefficient (N · s/m). The damping coefficient c takes on three values of 5 (under- damped), 40 (critically damped), and 200 (overdamped). The spring constant k = 20 N/m....

  • Model for Evaluation The model used for evaluation is the single degree of freedom lumped mass mo...

    Model for Evaluation The model used for evaluation is the single degree of freedom lumped mass model defined by second order differential equation with constant coefficients. This model is shown in Figure 1. x(t)m m f(t) Figure 1 - Single Degree of Freedom Model The equation of motion describing this system can easily be shown to be md-x + cdx + kx = f(t) dt dt where m is the mass, c is the damping and k is the stiffness...

  • I want matlab code. 585 i1 FIGURE P22.15 22.15 The motion of a damped spring-mass system (Fig. P22.15) is de...

    I want matlab code. 585 i1 FIGURE P22.15 22.15 The motion of a damped spring-mass system (Fig. P22.15) is described by the following ordinary differ- ential equation: dx dx in dt2 dt where x displacement from equilibrium position (m), t time (s), m 20-kg mass, and c the damping coefficient (N s/m). The damping coefficient c takes on three values of 5 (underdamped), 40 (critically damped), and 200 (over- damped). The spring constant k-20 N/m. The initial ve- locity is...

  • 1.- Starting from the differential equation for a 1-degree of freedom system with mass M, damping...

    1.- Starting from the differential equation for a 1-degree of freedom system with mass M, damping c and spring stiffness k: a.- Show that the particular solution for the equation with an applied force fo cos(ot), i.e., Mä+ci+kx=f, cos(or) can be expressed as x )= A cos(ot) + A, sin(or) and find the values of A, and A, that solve the differential equation in terms of M, c, k and fo. 5 points. b. Use the result from part a...

  • SOLVE NUMERICALLY USING EULERS METHOD

    The motion of a damped spring-mass system (Fig. P25.16)  is described by the following ordinary differential equation: m d2x dt2 1 c dx dt 1 kx 5 0 where x 5 displacement from equilibrium position (m), t 5 time  (s), m 5 20-kg mass, and c 5 the damping coeffi cient (N ? s/m).  The damping coeffi cient c takes on three values of 5 (underdamped), 40 (critically damped), and 200 (overdamped). The  spring constant k 5 20 N/m. The...

  • 3. Consider the equation of motion of a single-degree-of-freedom system: mi + ci + kx =...

    3. Consider the equation of motion of a single-degree-of-freedom system: mi + ci + kx = F(1) Derive the condition that leads to divergent oscillations in each of the following cases: (a) when the forcing function is proportional to the displacement, F(t) = F,x(t); when the forcing function is proportional to the velocity, F(t) = Fox(t); and (c) when the forcing function is proportional to the acceleration, F(t) = F,x(t).

  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

  • The single degree of freedom model of a vehicle shown below will be used to obtain...

    The single degree of freedom model of a vehicle shown below will be used to obtain a first approximation of the dynamic behavior of the entire vehicle. The mass m of the vehicle is 1200 kg when fully loaded and 400 kg when empty. The spring constant k is 400 kN/m and the damping ratio ζf is 0.4 when the vehicle is fully loaded. The vehicle is traveling at 100 km/h over a road whose surface has a sinusoidally varying...

  • Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following....

    Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following. The mass m 1, damping coetfic e initial position y(o) O, and the initial velocity i constant k 3 and force 10, all are in appropriate units. Th 1, spring zero, within the time range of O to 20 unit of time, use Matlab find the solution of function y(t)? Hint: you need to convert the 2nd order ODE into two 1st order ODEs....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT