Question

suppose a soud sphere of radius R and mass M starts from rest at an heignt of 2.85m and rolls down an. inaint with a slope of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..W = VR a = 33.3 Th=ane?? V (not visible propenly) (not 2=veTo=33-3° using Energy conservation, gh = {mv² r £ 5W? gh = // mv ²

Add a comment
Know the answer?
Add Answer to:
suppose a soud sphere of radius R and mass M starts from rest at an heignt...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow...

    A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow cube at the bottom that is only 1/5 its mass. If the incline is h tall and the table has a height of D from the floor, at what horizontal distance from the table do the two objects land? The cube/sphere combination leaves the incline moving horizontally.

  • A solid sphere of mass M and radius R starts from rest at the top of...

    A solid sphere of mass M and radius R starts from rest at the top of an inclined ramp, and rolls to the bottom.  The upper end of the ramp is h meters higher than the lower end.  (Note: The moment of inertia for a solid sphere rotating about an axis through its center is (2/5)MR2) Draw an energy bar chart & corresponding equation for this situation Symbolically, what is the linear speed of the sphere at the bottom of the ramp...

  • A solid sphere of mass M and radius R is sitting on a nat 1001 starts...

    A solid sphere of mass M and radius R is sitting on a nat 1001 starts to raise on an incline, where the angle of the incline with respect to nomzo 0 = wot, where wo is a constant. Find the speed of the sphere as it rolls angle of the incline with respect to horizontal increases with time: time. Hint: first find the acceleration, from which you can find the speed. the speed of the sphere as it rolls...

  • 4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest...

    4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest and rolls down a 3.00- high without slipping. What is the total energy of the sphere just before it starts rolling down? mazka 5. What is the velocity of the sphere just as it reaches the bottom of the incline? 6. What is the rotational kinetic energy of the sphere just as it reaches the bottom of the incline?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0? incline that is 10.0m long. Part A Calculate its translational speed when it reaches the bottom. v= Part B Calculate its rotational speed when it reaches the bottom. Express your answer using three significant figures and include the appropriate units. w = Part C What is the ratio of translational to rotational kinetic energy at the bottom?...

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.A) Calculate its translational speed when it reaches the bottom.B) Calculate its rotational speed when it reaches the bottom.      C) What is the ratio of translational to rotational kinetic energy at the bottom?        D) Avoid putting in numbers until the end so you can answer: do your...

  • A solid sphere of uniform density starts from rest and rolls without slipping a distance of...

    A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 2 m down a θ = 20° incline. The sphere has a mass  M = 5.8 kg and a radius R = 0.28 m. 1. Of the total kinetic energy of the sphere, what fraction is translational? KE tran/KEtotal 2)What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? KE tran = 3. What is the...

  • A solid sphere of mass M and radius R starts from rest from the top of...

    A solid sphere of mass M and radius R starts from rest from the top of an inclined plane of height h, and rolls without slipping. Find the speed of the center of mass at the bottom of the inclined plane. (I = {MR) М. R x d u CM Radi-Rasmussen Select one: a. Egh cose 10 b Mgh d. Mgh sin 0 e v2gh • 1. Mgd n. Vigh sin e ENG

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT