Question

Consider the linear transformation T: Rn → Rn whose matrix A relative to the standard basis is given. A 2 2 (a) Find the eigenvalues of A. (Enter your answers from smallest to largest.) (A1, A2) -1 5 (b) Find a basis for each of the corresponding eigenspaces (c) Find the matrix A for Trelative to the basis B, where B is made up of the basis vectors found in part (b)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution : ( a )

5 2

\mathrm{Eigenvalues\:of\:}A\mathrm{\:are\:the\:roots\:of\:the\:characteristic\:equ.\:}\det \left(A-\lambda \:I\right)=0

\det \left(\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-\lambda \begin{pmatrix}1&0\\ 0&1\end{pmatrix}\right)

= \det \left ( \begin{pmatrix}2&2\\ -1&5\end{pmatrix}-\begin{pmatrix}\lambda &0\\ 0&\lambda \end{pmatrix} \right )

= \det \begin{pmatrix}2-\lambda &2-0\\ \left(-1\right)-0&5-\lambda \end{pmatrix}

= \det \begin{pmatrix}2-\lambda &2\\ -1&5-\lambda \end{pmatrix}

\det \begin{pmatrix}2-\lambda &2\\ -1&5-\lambda \end{pmatrix}

=\left(2-\lambda \right)\left(5-\lambda \right)-2\left(-1\right)

=\left(2-\lambda \right)\left(5-\lambda \right)+2*1

= 2*5+2\left(-\lambda \right)+\left(-\lambda \right)*5+\left(-\lambda \right)\left(-\lambda \right) + 2

= 2*5 - 2\lambda -5\lambda +\lambda \lambda + 2

= 10 - 7\lambda + \lambda ^2 + 2

= \lambda ^2-7\lambda +12

\mathrm{Solve\: \:}\lambda^2-7\lambda +12 = 0 :

\lambda^2-7\lambda +12 = 0

\left(\lambda^2-3\lambda \right)+\left(-4\lambda +12\right) = 0

\lambda \left(\lambda-3\right)-4\left(\lambda-3\right) = 0

\left(\lambda -3\right)\left(\lambda -4\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:}

\mathrm{Solve\:}\:\lambda-3=0:\quad \lambda=3

\mathrm{Solve\:}\:\lambda-4=0:\quad \lambda=4

\mathrm{The\:final\:solutions\:to\:the\:quadratic\:equation\:are:}

\lambda_{1}=3,\:\lambda_{2}=4

\mathrm{The\:eigenvalues\:are:}

(\lambda _{1},\:\:\lambda _{2})=3,\:4

----------------------------------------------------------------------------------------------

Solution : ( b )

\mathrm{Eigenvectors\:for\:}\lambda_{1} =3:\quad

\mathrm{Solve\:}\:\left(A-\lambda_{1} \:I\right):\:\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-3\begin{pmatrix}1&0\\ 0&1\end{pmatrix}

\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-3\begin{pmatrix}1&0\\ 0&1\end{pmatrix}

=\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-\begin{pmatrix}3&0\\ 0&3\end{pmatrix}

=\begin{pmatrix}2-3&2-0\\ \left(-1\right)-0&5-3\end{pmatrix}

=\begin{pmatrix}-1&2\\ -1&2\end{pmatrix}

\mathrm{Reduce\:}\begin{pmatrix}-1&2\\ -1&2\end{pmatrix}:\quad

\begin{pmatrix}-1&2\\ -1&2\end{pmatrix}

\mathrm{Reduce\:matrix\:to\:row\:echelon\:form}\:

\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_2\:\mathrm{\:by\:performing}\:R_2\:\leftarrow \:R_2-1*R_1

=\begin{pmatrix}-1&2\\ 0&0\end{pmatrix}

\mathrm{Reduce\:matrix\:to\:reduced\:row\:echelon\:form}\:

\mathrm{Multiply\:matrix\:row\:by\:constant:}\:R_1\:\leftarrow \:-1*R_1

=\begin{pmatrix}1&-2\\ 0&0\end{pmatrix}

\mathrm{The\:system\:associated\:with\:the\:eigenvalue\:}\lambda =3

\left(A-3I\right)\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}1&-2\\ 0&0\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}

\mathrm{This\:reduces\:to\:the\:equation}

x-2y=0

\mathrm{Isolate}

x=2y

\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\end{pmatrix}

v=\begin{pmatrix}2y\\ y\end{pmatrix}\space\space\:y\ne \:0


\mathrm{Let\:}y=1

\begin{pmatrix}2\\ 1\end{pmatrix}

\mathrm{and}

\mathrm{Eigenvectors\:for\:}\lambda_{2}=4:\quad

\mathrm{Solve\:}\:\left(A-\lambda_{2} \:I\right):\:\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-4\begin{pmatrix}1&0\\ 0&1\end{pmatrix}

\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-4\begin{pmatrix}1&0\\ 0&1\end{pmatrix}

=\begin{pmatrix}2&2\\ -1&5\end{pmatrix}-\begin{pmatrix}4&0\\ 0&4\end{pmatrix}

=\begin{pmatrix}2-4&2-0\\ \left(-1\right)-0&5-4\end{pmatrix}

=\begin{pmatrix}-2&2\\ -1&1\end{pmatrix}

\mathrm{Reduce\:}\begin{pmatrix}-2&2\\ -1&1\end{pmatrix}:\quad

\begin{pmatrix}-2&2\\ -1&1\end{pmatrix}

\mathrm{Reduce\:matrix\:to\:row\:echelon\:form}\:

\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_2\:\mathrm{\:by\:performing}\:R_2\:\leftarrow \:R_2-\frac{1}{2}*R_1

=\begin{pmatrix}-2&2\\ 0&0\end{pmatrix}

\mathrm{Reduce\:matrix\:to\:reduced\:row\:echelon\:form}\:

\mathrm{Multiply\:matrix\:row\:by\:constant:}\:R_1\:\leftarrow \:-\frac{1}{2}* R_1

=\begin{pmatrix}1&-1\\ 0&0\end{pmatrix}

\mathrm{The\:system\:associated\:with\:the\:eigenvalue\:}\lambda =4

\left(A-4I\right)\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}1&-1\\ 0&0\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}

\mathrm{This\:reduces\:to\:the\:equation}

x-y=0

\mathrm{Isolate}

x=y

\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\end{pmatrix}

v=\begin{pmatrix}y\\ y\end{pmatrix}\space\space\:y\ne \:0

\mathrm{Let\:}y=1

\begin{pmatrix}1\\ 1\end{pmatrix}

\mathrm{Hence,}

\mathrm{The\:vector\:B_{1}=}\mathrm{\begin{pmatrix}2\\ 1\end{pmatrix}\:\: is \:a\: basis\: for\: the\: eigenspace\: corresponding\: to\:\lambda_{1} =3\:}.

\mathrm{and}

\mathrm{The\:vector\:B_{2}=}\mathrm{\begin{pmatrix}1\\ 1\end{pmatrix}\:\: is \:a\: basis\: for\: the\: eigenspace\: corresponding\: to\:\lambda_{2} =4\:}.

Add a comment
Know the answer?
Add Answer to:
Consider the linear transformation T: Rn → Rn whose matrix A relative to the standard basis...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT