Question

1 Consider the system whose transfer function is given by: G(S) == (2s +1)(s+3) unction is given by: G(s) - (a) Use the root-

only b and c please

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(b)

CODE:
MATLAB R2016b HOME PLOTS APPS a C: Users user ► New to MATLAB? See resources for Getting Started. >> s=tf(s); >> G = 1/((2*

Result:

Figure 1 File Edit View Insert Tools Desktop Window Ą B A O Help O B - O Root Locus Imaginary Axis (seconds-) ........... .

- 0 x Figure 1 File Edit View Insert Tools Desktop Window Help ad @ E - 15 0.38 . .0.26 Root Locus .0.19 0.13 0.085 0:04 10 F

so k = 147

(c)

MATLAB R2016b HOME PLOTS APPS 1 a C : Users user ► New to MATLAB? See resources for Getting Started. >> sys = feedback (147*G

- O X Figure 1 File Edit View OD Insert Tools Desktop Window Help VA. IE - Step Response Amplitude 0 0.2 0.4 0.6 0. 8 1 Time

Add a comment
Know the answer?
Add Answer to:
only b and c please 1 Consider the system whose transfer function is given by: G(S)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • design this compensator using root locus? note: answer using root locus 1- Consider a system with the following...

    design this compensator using root locus? note: answer using root locus 1- Consider a system with the following open loop Transfer Function: G(s)--10 s(s2 + 10s + 16) Design a compensator to obtain a damping ratio-0.5 and a natural frequency n6 rad/sec. (8 marks) We were unable to transcribe this image 1- Consider a system with the following open loop Transfer Function: G(s)--10 s(s2 + 10s + 16) Design a compensator to obtain a damping ratio-0.5 and a natural frequency...

  • A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus...

    A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus plot as shown below. The location of the roots for a system gain of K= 0.248 is show on the plot. At this location the system has a damping factor of 0.708 and a settling time of 4/1.5 = 2.67 seconds. A lead compensator is to be used to improve the transient response. (Note that nothing is plotted on the graph except for that...

  • Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) ...

    Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) (s +15) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. (b) Design a PID compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. Design specifications -SSE to a unit step reference input is less than 0.02. Overshoot is less than 20%. Peak time is less than...

  • Consider a negative feedback system whose open-loop transfer function is: G(s)H(s)=K/(s(s+1)) Write a MATLAB program to...

    Consider a negative feedback system whose open-loop transfer function is: G(s)H(s)=K/(s(s+1)) Write a MATLAB program to obtain the root-locus plot of G(s)H(s). [2 marks] What are the locations of poles when K = 0.19. [2 marks] When K = 0.4, what are the locations of poles? [3 marks] Find values of the damping ratio, % overshoot and frequency when K = 0.4. [3 marks] Write a MATLAB program to obtain a bode plot of G(s)H(s) when K = 1. [2...

  • Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15...

    Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15) G(s) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications (b) Design a PID compensator for G (s) using root locus so that the clos ed-loop system satisfies the design specifications. Design specifications .SSE to a unit step reference input is less than 0.02. Overshoot is less than 20% Peak time is less...

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • A transfer function is given by G(s) H (s) = s(s+1 ) (s + 8 (a)...

    A transfer function is given by G(s) H (s) = s(s+1 ) (s + 8 (a) Design a Lead Compensator or PD controller such that the closed loop has the following specifications: Percent Overshoot (PO) 16 % Rise time 0.4 sec-2.16 ? + 0.6 (b) Determine the velocity error constant (Kv) of the uncompensated and compensated systems.

  • 1) Plot the root locus of the system whose characteristic equation is 2) Plot the root locus of the closed loop system whose open-loop transfer function is given as 2s + 2 G(S)H(S)+7s3 +10s2 3)...

    1) Plot the root locus of the system whose characteristic equation is 2) Plot the root locus of the closed loop system whose open-loop transfer function is given as 2s + 2 G(S)H(S)+7s3 +10s2 3) Plot root locus of the closed-loop system for which feedforward transfer function is s + 1 G(S) s( ) St(s - and feedback transfer function is H(S)2 +8s +32 1) Plot the root locus of the system whose characteristic equation is 2) Plot the root...

  • Problem (2) The open loop transfer function of a feedback system is given by к H...

    Problem (2) The open loop transfer function of a feedback system is given by к H (s) = 10 G(s) = ------ - s (s +1) (0.2 s+ 1) Design a controller such that the closed loop system will have a settling time less than 1.0 sec. and a percentage overshoot (PO) less than 5%. Draw the root locus plots of the uncompensated and compensated systems using Matlab.

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT