Question

A solid disk and a wedge of the same mass M are positioned at the top...

A solid disk and a wedge of the same mass M are positioned at the top of a ramp with height h, and let go from rest in the Ideal Land of First Year Physics where there is no friction, but there is also rolling without slipping. Which one has the greater translational velocity when it gets to the bottom of the ramp?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

will move both flone their Sol - As, of these objects kinetjie energy wi will down the increase - Solid disc will store kine

Add a comment
Know the answer?
Add Answer to:
A solid disk and a wedge of the same mass M are positioned at the top...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid disk and a wedge each have the same mass, M = 2.0 kg. They...

    A solid disk and a wedge each have the same mass, M = 2.0 kg. They are positioned at the top of a ramp of length L = 4.0 m, which makes an angle of 300 with the horizontal. Both are let go from rest at the same height. (This takes place in the Ideal Land of First Year Physics where there is no friction, but there is also rolling without slipping.) What is the translational velocity of each one...

  • A solid sphere, a solid disk, and a thin hoop are all released from rest at...

    A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm). a) Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain b) Again, without doing any calculations, decide which object would get to the bottom first. Hint: which one has greater translational speed? Think CoE! c) Assuming all objects are rolling without slipping, have a mass...

  • A solid sphere, a solid disk, and a thin hoop are all released from rest at...

    A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm). a) Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain b) Again, without doing any calculations, decide which object would get to the bottom first. Hint: which one has greater translational speed? Think CoE! c) Assuming all objects are rolling without slipping, have a mass...

  • A solid sphere, a solid disk, and a thin hoop are all released from rest at...

    A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm). a) Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain b) Again, without doing any calculations, decide which object would get to the bottom first. Hint: which one has greater translational speed? Think CoE! c) Assuming all objects are rolling without slipping, have a mass...

  • show all work A solid sphere, a solid disk, and a thin hoop are all released...

    show all work A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (ho = 20.0 cm). a) Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain b) Again, without doing any calculations, decide which objďct would get to the bottom first. Hint: which one has greater translational speed? Think CoE! c) Assuming all objects are rolling without slipping,...

  • A tire (solid disk) has a mass of 10 kg and a radius of 0.25 m....

    A tire (solid disk) has a mass of 10 kg and a radius of 0.25 m. The tire rests at the top of an incline. When released, the tire rolls without slipping down to the bottom of the incline. The top of the incline is 10 m in height above the bottom of the incline. a) What is the angular velocity of the tire at the bottom of the incline? b) What would the angular velocity at the bottom of...

  • Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H l...

    Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H leading to a circular loop-the loop. The center of mass of the ball will move in a circle of radius R if it goes around the loop. The moment of inertia of a solid ball is Ibull--mr. (a) Find an expression for the minimum height H for which the ball barely goes around the loop, staying...

  • 3. A ball, a solid sphere of radius r and mass m, is positioned at the top of a ramp that makes an angle of 0 with the horizontal. The initial position of the sphere is at a distance of d from its fi...

    3. A ball, a solid sphere of radius r and mass m, is positioned at the top of a ramp that makes an angle of 0 with the horizontal. The initial position of the sphere is at a distance of d from its final position at the bottom of the incline. a) Find the velocity of the ball at the bottom of the ramp in terms of m, r, d, 8, and g. The moment of inertia of a sphere...

  • A uniform solid disk has a radius 1.60 m and a mass of 2.30 kg rolls...

    A uniform solid disk has a radius 1.60 m and a mass of 2.30 kg rolls without slipping to the bottom of an inclined plane. If the angular velocity is 4.09 rad/s at the bottom, what is the height of the inclined plane?

  • Please submit the answer to this problem on a separate piece of paper, in submission box....

    Please submit the answer to this problem on a separate piece of paper, in submission box. A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (ho = 20.0 cm). a) Without doing any calculations, decide which object would be spinning the fastest when it gets the bottom. Explain b) Again, without doing any calculations, decide which object would get to the bottom first. Hint: which one has greater...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT