Question

Air enters a diffuser at a constant 109 Kpa , 60 celcius and 292 meters per...

Air enters a diffuser at a constant 109 Kpa , 60 celcius and 292 meters per second. The air exits at 305 Kpa , 10 Celcius and 10 meters per second. The area of the inlet is 104 cm^2. You can assume the air is an ideal gas. CP and CV values are assumed constant. Steady flow. There is no change in Potential Energy.

Ru=8.314 kj/kmol*k

Mair = 28.97 kg/kmol

cp=1.005 kj/kg*k

cv=0.718 kj/kg*k

Determine the average heat transfer time rate in kW.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

in SA VIRS= B - 10g 2 O P2 = 305k Pa T2 = 10°c V2 =10m/s. P = 109 kPa TI = 60°c Vi = 292 m/s A = 104 an ² - loy m² (100) 2 1a

Add a comment
Know the answer?
Add Answer to:
Air enters a diffuser at a constant 109 Kpa , 60 celcius and 292 meters per...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 kPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 KPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 KPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 KPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

  • Air steadily enters the diffuser section of a jet engine at a velocity of 270 m/s...

    Air steadily enters the diffuser section of a jet engine at a velocity of 270 m/s at 85 kPa and at 250 °C. There is heat addition from the diffuser walls to the air. The air exits the diffuser at 1/3 of its inlet velocity. The heat addition per kg air entering the diffuser is 13 kJ/kg. What is the change in the specific enthalpy of the air (kJ/kg)?

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • 0.20 kg of air at pressure of 113 kPa occupies 0.18 m3 and from this condition...

    0.20 kg of air at pressure of 113 kPa occupies 0.18 m3 and from this condition it is compressed to 1237 kPa accordingly to the law P*(V)1.28 = constant. Determine change of internal energy of the air in kJ, Cp=1.005 kJ/kg K Cv=0.718kJ/kg K R=0.287 kJ/kg K

  • Otto cycle

    The air standard Otto cycle has the compression ratio as 8.5. The inlet of the compression has pressure 1 bar and temperature 300 K. The heat is added to the cycle is 1400 kJ/kg. Determine the mean effective pressure in kPa. Assume the CP, CV, and y for air as 1.005kJ/kg, 0.718 kJ/kg, and 1.4, respectively.

  • Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a...

    Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a velocity of 100 m/s. It exits the nozzle at a pressure of 100 kPa. Assuming that the expansion through the nozzle occurs reversibly, determine (a) the exit temperature and (b) the exit velocity of the air. The specific heats of air can be assumed to be constant with Cv = 0.742 kJ/kg oC and Cp = 1.029 kJ/kg oC.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT