Question

Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s,C. chamber compressor diffuser gas turbine nozzle

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in...

    Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in flight. The air mass flow rate is 28 kg/s. The compressor pressure ratio is 13, the turbine inlet temperature is 1460 K, and air exits the nozzle at 30 kPa. The diffuser and nozzle processes are isentropic, the compressor and turbine have isentropic efficiencies of 81% and 88%, respectively, and there is no pressure drop for flow through the combustor. Kinetic energy is negligible...

  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...

    A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 9 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...

  • As a propulsion engineer, you are tasked with testing a turbojet engine to determine characterist...

    As a propulsion engineer, you are tasked with testing a turbojet engine to determine characteristics. The turbojet engine consists of a diffuser, compressor, combustion chamber, turbine and nozzle. Consider the following cases: its performance 2. Air approaches the diffuser of the turbojet engine with a pressure of 20 kPa at a Mach number of 2. A normal shock occurs at the inlet of the channel The exit to inlet area ratio is 3. Determine the following: a. The loss of...

  • A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine...

    A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 260 m/s at an altitude where the air is at 61 kPa and -11 °C. The inlet diameter of this engine is 1.6 m; the thrust produced by the engine under ideal cruising conditions is 93,625 N; and the temperature at the turbine inlet is 750 °C. Assume constant specific heat values at room temperature, choked flow...

  • 2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is...

    2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is flying at cruising condition with a flight Mach number of 0.7. The ambient temperature and pressure are 250 K and 100 kPa, respectively. The engine compressor pressure ratio is 12, and the turbine inlet temperature is 1200 K. Assume all mechanical components are operating at isentropic condition and the specific heat can be considered a constant (throughout the entire engine) of 1 kJ/(kg K)....

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • A jet engine propels an aircraft at 289 m/s through air at 54 kPa and 267 K.

    A jet engine propels an aircraft at 289 m/s through air at 54 kPa and 267 K. The compressor pressure ratio is 9 and the temperature at the turbine inlet is 885 K. b) Taking the pressure in the combustion chamber as 843.5 kPa and the temperature at the turbine exit to be 518 K, determine the velocity of the exhaust gases. Give your answer in m/s to 2 decimal places Assume ideal operation for all components and constant specific heats at room...

  • please solve h to m .A-7 The gas turbine engines that are used on a military...

    please solve h to m .A-7 The gas turbine engines that are used on a military jet air plane likely consists of a diffuser, compressor, combustor, turbine, afterburmer, and nozzle that are arranged in series as shown in Figure 4.A-7(a) and flying with a velocity of 350 mph. The analysis will be carried out on a component-by component basis. Model the air as an ideal gas and assume that it has constant c and cp R 287.1 Ikg-K and c-1005...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT