Question

A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...

A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 9 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The turbine exit pressure is 50 kPa and the nozzle exit pressure is 40 kPa. Flow through the diffuser and nozzle is isentropic. Use an air-standard analysis and neglect kinetic energy except at the diffuser inlet and the nozzle exit.Determine the power delivered to the propeller, in MW.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

W, = 9.2MW

The detailed solution is given below:
Giveno va = 63.7 mils | Ta=200k [v=o | Me = M = 0.85 Pa= 40kba / Va = 180m/s - 9 / T = 1240K Compressor Combustor o 1 Pq = 50

0. At To =25ok → ho = 250.05 and Port = 0.7329 and TC= 260k → hc = 260.09 and Prc = 0.8405 → Pro = Pro + (re-Pro) x[h-ho] = 0

c. b = 2502 + [ato ] seos king # State 3: [P3=] - - To=1240k h ₂ = 1324.93 kilky I paz = 272.3 # Stalen: [isen tropic expansi

= 1324.93 – (0.85) (1324-93–722) 6. h4 = 812.44 kilky # The power delivered to the propellers → Wp = WE Wc = in [[hz ha) -(hz

Add a comment
Know the answer?
Add Answer to:
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine...

    A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 260 m/s at an altitude where the air is at 61 kPa and -11 °C. The inlet diameter of this engine is 1.6 m; the thrust produced by the engine under ideal cruising conditions is 93,625 N; and the temperature at the turbine inlet is 750 °C. Assume constant specific heat values at room temperature, choked flow...

  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in...

    Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in flight. The air mass flow rate is 28 kg/s. The compressor pressure ratio is 13, the turbine inlet temperature is 1460 K, and air exits the nozzle at 30 kPa. The diffuser and nozzle processes are isentropic, the compressor and turbine have isentropic efficiencies of 81% and 88%, respectively, and there is no pressure drop for flow through the combustor. Kinetic energy is negligible...

  • please solve h to m .A-7 The gas turbine engines that are used on a military...

    please solve h to m .A-7 The gas turbine engines that are used on a military jet air plane likely consists of a diffuser, compressor, combustor, turbine, afterburmer, and nozzle that are arranged in series as shown in Figure 4.A-7(a) and flying with a velocity of 350 mph. The analysis will be carried out on a component-by component basis. Model the air as an ideal gas and assume that it has constant c and cp R 287.1 Ikg-K and c-1005...

  • estion 9- Ramjet Operation (15 Points): You are asked to calculate the operational parameters of an ideal ramjet engine. flame holder combustion zone Me inlet diffuser nozzle e- Nozzle exit throa...

    estion 9- Ramjet Operation (15 Points): You are asked to calculate the operational parameters of an ideal ramjet engine. flame holder combustion zone Me inlet diffuser nozzle e- Nozzle exit throat-M-1 Normal shock wave Ramjet 3-Burner exit 2- Diffuser exit 00 K. Flight altitude is 10 knm Flight Mach number is 2.0. Burner exit temperature is 17 Make the following assumptions: Assume that the Mach number in the combustor is zero (stations 2 and 3) Ignore pressure losses in the...

  • WGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor ...

    wGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor Pi 100 kPa Regenerator Evaporator Turbine Generator Vapor turbine cycde (VTC) T, = T, + 20 K Condenser 10 Pump Saturated liquid A combined cycle plant operates with a topping gas turbine and a bottoming vapor turbine cycle. The working fluid in the vapor turbine cycle is water. The gas turbine cycle (GTC) electric generator produces 100kW of electric power For air use...

  • 1. A combustion turbine possesses the following characteristics: Compressor 97 kPa and 30。C inlet conditions Pressure...

    1. A combustion turbine possesses the following characteristics: Compressor 97 kPa and 30。C inlet conditions Pressure ratio: 5.5 Isentropic compression efficiency: 0.84 Combustor Outlet temperature: 1000 °C Pressure loss: 3 percent Fuel: natural gas Turbine Exit pressure: 100 kPa Isentropic expansion efficiency: 0.88 Generator Generator efficiency: 0.98 Determine the overall thermal efficiency, the heat rate, and the fuel-to-air ratio

  • In a combustion turbine using natural gas as the fuel, air enters the compressor at 98...

    In a combustion turbine using natural gas as the fuel, air enters the compressor at 98 kPa and 300 "K. The pressure ratio in the compressor is 8 and the isentropic efficiency of the compressor is 85%. The outlet temperature of the combustion chamber is 1200 K. The pressure drops by 4 percent in the combustion chamber. The exit pressure of the turbine is 102 kPa and the isentropic efficiency of the turbine is 90%. Find: a) The exit temperature...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R-0287 kJ/kg-K respectively --Given Values-- Inlet Temperature: TI (K) 349 Inlet pressure: Pl (kPa) 460 Inlet Velocity: V1 (m/s) 73 Area at nozzle inlet: Al (cmA2) 8.19 Throat area: A...

  • As a propulsion engineer, you are tasked with testing a turbojet engine to determine characterist...

    As a propulsion engineer, you are tasked with testing a turbojet engine to determine characteristics. The turbojet engine consists of a diffuser, compressor, combustion chamber, turbine and nozzle. Consider the following cases: its performance 2. Air approaches the diffuser of the turbojet engine with a pressure of 20 kPa at a Mach number of 2. A normal shock occurs at the inlet of the channel The exit to inlet area ratio is 3. Determine the following: a. The loss of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT