Question

Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in flight. The air mass flow rate is 28 kg/s. The

0 0
Add a comment Improve this question Transcribed image text
Answer #1

4 Run = P4 3 5 ī BS 55 2 P= P6 Sp=1005 kgok S For Air, 1-2=) Isentropis Diffused 2-35 =) Isentropic Compression K=1.4 3.4 =>V? 2000 250² 2oot Z 2000 81.005 It Zooox I 231.095k 1:4 4 R-1 231.095 1-2, Pa P. - P2 = 30 2oo P = 49.748 Kia 22 gotowe E- 2-We = W co (Is-TZ) = cp (Tants) I. 1460k 539.503-231.095 = 1460 - To To = 1151.5915 B It Is 20.88 = We have a Ta-Tos 0.88 = 14veiling 542.2 hg T3 = 1.0054 539.503= 1467.3 kJ/kg ha ç It = 1.005x1460 a ks/ky 11 57.35 ho T = 1.005X 1151.59- kJ/kg ve 633.

Add a comment
Know the answer?
Add Answer to:
Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...

    A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 9 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • 2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is...

    2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is flying at cruising condition with a flight Mach number of 0.7. The ambient temperature and pressure are 250 K and 100 kPa, respectively. The engine compressor pressure ratio is 12, and the turbine inlet temperature is 1200 K. Assume all mechanical components are operating at isentropic condition and the specific heat can be considered a constant (throughout the entire engine) of 1 kJ/(kg K)....

  • A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine...

    A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 260 m/s at an altitude where the air is at 61 kPa and -11 °C. The inlet diameter of this engine is 1.6 m; the thrust produced by the engine under ideal cruising conditions is 93,625 N; and the temperature at the turbine inlet is 750 °C. Assume constant specific heat values at room temperature, choked flow...

  • As a propulsion engineer, you are tasked with testing a turbojet engine to determine characterist...

    As a propulsion engineer, you are tasked with testing a turbojet engine to determine characteristics. The turbojet engine consists of a diffuser, compressor, combustion chamber, turbine and nozzle. Consider the following cases: its performance 2. Air approaches the diffuser of the turbojet engine with a pressure of 20 kPa at a Mach number of 2. A normal shock occurs at the inlet of the channel The exit to inlet area ratio is 3. Determine the following: a. The loss of...

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a...

    Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a velocity of 100 m/s. It exits the nozzle at a pressure of 100 kPa. Assuming that the expansion through the nozzle occurs reversibly, determine (a) the exit temperature and (b) the exit velocity of the air. The specific heats of air can be assumed to be constant with Cv = 0.742 kJ/kg oC and Cp = 1.029 kJ/kg oC.

  • Please show full steps, will rate. A turbojet powered aircraft is flying at 250 m/s where...

    Please show full steps, will rate. A turbojet powered aircraft is flying at 250 m/s where the ambient temperature and pressure are -18 °C and 55 kPa, respectively. The pressure ratio for the compressor is 10, and the turbine inlet temperature is 1200 °C. The mass flow rate of air into the engine is 50 kg/s. a.) How much thrust does the engine develop? b.) How much heat must be added to the air in the combustor? c.) What is...

  • Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of...

    Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of 650K, and velocity of 75 m/s. The air exits the nozzle at a pressure of 100 kPa, and the isentropic nozzle efficiency is 82%. a). Determine the velocity of the air at the nozzle exit. b). Determine the rate of entropy generation in the nozzle per kg of air flowing in kW/kgK

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT