Question

2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is flying at cruising condition with a flight Mach

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Find the velocity by using the Mach number kRT 0.7 = 1.4x 287x 250 221.85m/s Apply energy equation to the process 0-1 T = 250

Find the temperature at the outlet of the comp ressor, 1.4-1 T. 1214 274.068 7, = 557.437 K Find the pressure at state 2 =12x

Find the temperature at state 4 by equating the work output from turbine is equal to the work nput to the compressor n, (5574

Apply energy equation to the nozzle and find the exit velocity of the nozzle. 1000(921.7619- 537.119)-5 V877.089 m/s Find the

Add a comment
Know the answer?
Add Answer to:
2. An aircraft with a single turbojet engine (with an inlet area of 1 m2) is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine...

    A turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 260 m/s at an altitude where the air is at 61 kPa and -11 °C. The inlet diameter of this engine is 1.6 m; the thrust produced by the engine under ideal cruising conditions is 93,625 N; and the temperature at the turbine inlet is 750 °C. Assume constant specific heat values at room temperature, choked flow...

  • As a propulsion engineer, you are tasked with testing a turbojet engine to determine characterist...

    As a propulsion engineer, you are tasked with testing a turbojet engine to determine characteristics. The turbojet engine consists of a diffuser, compressor, combustion chamber, turbine and nozzle. Consider the following cases: its performance 2. Air approaches the diffuser of the turbojet engine with a pressure of 20 kPa at a Mach number of 2. A normal shock occurs at the inlet of the channel The exit to inlet area ratio is 3. Determine the following: a. The loss of...

  • A turbojet aircraft has its compressor rated at the pressure ratio of 10. Given that the aircraft...

    A turbojet aircraft has its compressor rated at the pressure ratio of 10. Given that the aircraft flies with a velocity of 289 m/s at an altitude where the air is at a pressure of 29.5 kPa and temperature of-31.0·C. The air enters the compressor at 54 kg/s. The fuel used during the flight is rated to provide 39300 kJ of heat energy from every kilogram burnt and the temperature of the air entering the turbine is 1047.744 K. Calculate...

  • Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in...

    Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in flight. The air mass flow rate is 28 kg/s. The compressor pressure ratio is 13, the turbine inlet temperature is 1460 K, and air exits the nozzle at 30 kPa. The diffuser and nozzle processes are isentropic, the compressor and turbine have isentropic efficiencies of 81% and 88%, respectively, and there is no pressure drop for flow through the combustor. Kinetic energy is negligible...

  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • A single-spool turbofan engine has the following data Ambient temperature Ambient pressure BPR Overall pressure ratio...

    A single-spool turbofan engine has the following data Ambient temperature Ambient pressure BPR Overall pressure ratio Fan pressure ratio Fuel heating value Turbine inlet temperature Diffuser pressure recovery factor Compressor efficiency Fan efficiency Combustion efficien Burner pressure recovery factor Turbine efficiency Nozzle efficiency Flight Mach number 288 K 101.3 kN/m2 0.7 25 3.375 44,000 kJ/kg 2000 K 0.9 0.89 0.91 0.98 0.95 0.98 1.0 0.3 Calculate 1. 2. 3. Thrust per unit mass flow rate TSFC Thermal, propulsive and overall...

  • Quantitative: In the 1950s liquid hydrogen was considered as a fuel for a new type of...

    Quantitative: In the 1950s liquid hydrogen was considered as a fuel for a new type of aircraft being developed, the SR-71 Blackbird (shown in Figure 1). Figure 1: The SR-71 Blackbird Early research on the project focused on which fuel to use for the Blackbird. Pratt & Whitney had a J-57 engine that was designed for kerosene and being considered for implementation on the Blackbird. The J-57 only took 5 months to convert to running on liquid hydrogen, however tests...

  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...

    A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 9 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...

  • If you could show all work with explanations that would be great!! Thanks!! #2. (30 pts)...

    If you could show all work with explanations that would be great!! Thanks!! #2. (30 pts) A turbocharger boosts the inlet air pressure to an automobile engine. It consists of an exhaust gas-driven turbine directly connected to an air compressor, as shown in a below figure. For a certain engine load, the conditions are given in the below figure. Assume that both the turbine and the compressor are reversible and adiabatic, having also the same mass flow rate. Engine power...

  • please solve h to m .A-7 The gas turbine engines that are used on a military...

    please solve h to m .A-7 The gas turbine engines that are used on a military jet air plane likely consists of a diffuser, compressor, combustor, turbine, afterburmer, and nozzle that are arranged in series as shown in Figure 4.A-7(a) and flying with a velocity of 350 mph. The analysis will be carried out on a component-by component basis. Model the air as an ideal gas and assume that it has constant c and cp R 287.1 Ikg-K and c-1005...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT