Question

A hanging weight, with a mass of m, -0.370, is attached by a rope to a block with mass-0070 Ahow in the gure below. The rope
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution R = 0-0200m mero.870kg M-O-350 Kg R2= 0.03oom Uke 0e250 0-700m mie 0.370 370 kg 19 = 0-820 ml Using work Energy the

Add a comment
Know the answer?
Add Answer to:
A hanging weight, with a mass of m, -0.370, is attached by a rope to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A hanging weight, with a mass of me = 0.350 kg, is attached by a rope...

    A hanging weight, with a mass of me = 0.350 kg, is attached by a rope to a block with mass m2 = 0.820 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R2 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...

  • A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope...

    A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope to a block with mass m2 = 0.825 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...

  • In the figure below, the hanging object has a mass of m, = 0.480 kg; the...

    In the figure below, the hanging object has a mass of m, = 0.480 kg; the sliding block has a mass of m, = 0.825 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R4 = 0.020 0 m, and an outer radius of R, = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...

  • In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the...

    In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the sliding block has a mass of m_2 = 0.770 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R_1 = 0.020 0 m, and an cuter radius of R_3 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...

  • In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding block has a mass ...

    In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding block has a mass of m2 0.820 kg; and the pulley is a hollow cylinder with a mass of M0.350 kg, an inner radius of R10.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is Hk0.250. The pulley turns without...

  • In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding...

    In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding block has a mass of m2 0.820 kg; and the pulley is a hollow cylinder with a mass of M0.350 kg, an inner radius of R10.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is Hk0.250. The pulley turns without...

  • 2. The pulley (disk) has a radius "R" and a mass "m". The rope does not...

    2. The pulley (disk) has a radius "R" and a mass "m". The rope does not slip over the pulley, and the pulley spins on a frictionless axle. The coefficient of kinetic friction between block A and the surface is "u. The system is released from rest and block B descends. Block A has a mass "2m" and block B has a mass "m Write out the forces and torque equations. Given [R, m, h, ], Determine: a. The acceleration...

  • ) A 2 kg block is attached to a rope. The rope is wound around a...

    ) A 2 kg block is attached to a rope. The rope is wound around a pulley which has a radius of 0.2 m. You do not know the mass of the pulley, or the geometry of the pulley. The block is released from rest, and you notice it has a speed of 3 m/s after falling 1.5 m. a) What is the angular velocity of the pulley when the speed is 3 m/s? b) Use the fact that energy...

  • A block of mass m = 3.39 kg is attached to a spring (k = 28.7...

    A block of mass m = 3.39 kg is attached to a spring (k = 28.7 N/m) by a rope that hangs over a pulley of mass M = 6.78 kg and radius R = 7.81 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley, and assuming the system starts from rest with the spring at its natural length, find the speed of the block after...

  • A box of mass m = 10.0 kg is attached to a rope. The other end...

    A box of mass m = 10.0 kg is attached to a rope. The other end of the rope is wrapped around a pulley with a radius of 15.0 cm. When you release the box, it begins to fall and the rope around the pulley begins to unwind, causing the pulley to rotate. As the box falls, the rope does not slip as it unwinds from the pulley. If the box is traveling at a speed of 2.50 m/s after...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT