Question

A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped into a large lake at 15°C. Thermal equilibri
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Aim: for the to determine the total entropy change processe Answer. Given information is muss of iron block of Copper mi 34 kentropy chunge for Copper block, AS. me Speopper. In (I \T, 48 x 0.386x In C288 353 = -3.7705 KJK entropy change for the lake7.6347 kI/K Step 2: Total entropy - chonge for the process. AS AS; + A Sct ASI where. AS E -3.1136 kJ/K ASc. = -3.7705 kJ/K A

Add a comment
Know the answer?
Add Answer to:
A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6: A 50 kg copper block initially at 80 C is dropped into a lake at...

    6: A 50 kg copper block initially at 80 C is dropped into a lake at 15 C. Thermal equilibrium is established after a while as a resul the lake water. The specific heat copper at roorm temperature is c,-0.386 kJ/kg°C. Assuming the surroundings to be at 20 c t of heat transfer between the b lock and a. Determine the internal energy change and the entropy change of the copper. b. Determine the total entropy change for this process....

  • Problem 2: (10 pts) A 30-kg iron block at initial temperature 200°C and a 40-kg copper...

    Problem 2: (10 pts) A 30-kg iron block at initial temperature 200°C and a 40-kg copper block at initial temperature 100°C are dropped into a very large lake at 20°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and lake water. Both blocks have constant specific heats, i.e. Ciron = 0.45 kJ/kg. K and Ccopper = 0.386 kJ/kg. K. Hint: The very large lake can be treated as a heat reservoir and...

  • A 70-kg copper block initially at 140'C is dropped into an insulated tank that contains 90...

    A 70-kg copper block initially at 140'C is dropped into an insulated tank that contains 90 L of water at 10'C. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of water at 25°C is cp=418 kJ/kg-K. The density of water is 997 kg/m2. The specific heat of copper at 27°C is Cp=0.386 kJ/kg.K. Water Copper 90 L The final equilibrium temperature is OK The total entropy change during this process is OKJ/K.

  • An aluminum block weighing 32 kg initially at 140°C is brought into contact with a block...

    An aluminum block weighing 32 kg initially at 140°C is brought into contact with a block of iron weighing 44 kg at 60°C in an insulated enclosure. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of aluminum at 400 K is Cp0.949 kJ/kg.K. The specific heat of iron at room temperature is Cp=0.45 kJ/kg.K. The final equilibrium temperature is 108,35 K. The total entropy change for this process is 397 kJ/K

  • A 46 kg copper block initially at 140°C is dropped into an insulated tank that contains...

    A 46 kg copper block initially at 140°C is dropped into an insulated tank that contains 90 L of water at 10°C. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of water at 25°C is Cp= 4.18 kJ/kg-K. The density of water is 997 kg/m3. The specific heat of copper at 27°C is cp=0.386 kJ/kg-K. Water Copper 90 L The final equilibrium temperature is 15.85 K. The total entropy change during this...

  • my work С 2 10 points An aluminum block weighing 22 kg initially at 140°C is...

    my work С 2 10 points An aluminum block weighing 22 kg initially at 140°C is brought into contact with a block of iron weighing 24 kg at 60°C in an insulated enclosure. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of aluminum at 400 Kis Cp = 0.949 kJ/kg.K. The specific heat of iron at room temperature is Cp = 0.45 kJ/kg.K. 01:56:29 The final equilibrium temperature is K. The total...

  • A 75 kg aluminium ingot (initially at 58 °C), and a 48 kg granite block (initially...

    A 75 kg aluminium ingot (initially at 58 °C), and a 48 kg granite block (initially at 62 °C)) are lowered into a large water reservoir at 17 °C. Both the aluminium ingot and granite block reach the same temperature as the water, due to heat transfer between the blocks and the reservoir water. (a) Determine the total entropy change for this process. (12 marks) (b) With the aid of a diagram, briefly discuss the reversibility/irreversibility of all the heat...

  • Problem3 A block of copper has a mass of 100 kg and an initial temperature of...

    Problem3 A block of copper has a mass of 100 kg and an initial temperature of 900 K. Copper can be modeled as an incompressible substance with a specific heat capacity of 0.4 kJ/kg-K. a) The copper block is dropped into a large lake at 300 K and allowed to come to thermal equilibrium. How much entropy is generated (kJ/K)?

  • A 1.6 kg block of iron at 35 ∘C is rapidly heated by a torch such...

    A 1.6 kg block of iron at 35 ∘C is rapidly heated by a torch such that 14 kJ is transferred to it. What temperature would the block of iron reach (assuming the complete transfer of heat and no loss to the surroundings)? If that same amount of heat (14 kJ ) was quickly transferred to a 890 g pellet of copper at 34 ∘C, what temperature would the copper reach before it begins losing heat to the surroundings?

  • A 3.2 kg block of copper at a temperature of 82°C is dropped into a bucket...

    A 3.2 kg block of copper at a temperature of 82°C is dropped into a bucket containing a mixture of ice and water whose total mass is 1.2 kg. When thermal equilibrium is reached the temperature of the water is 8°C. How much ice was in the bucket before the copper block was placed in it? (Neglect the heat capacity of the bucket.) answer in kg

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT