Question

An aluminum block weighing 32 kg initially at 140°C is brought into contact with a block of iron weighing 44 kg at 60°C in an
0 0
Add a comment Improve this question Transcribed image text
Answer #1

seln MAL = 32 kg ㅠ 140°C Mr = 44 kg T2= 60°c Mae Cear (140-T) = M, CPI (T-60) 32 x 0.949 x (140-T) = 44X0:45 (T-60) 425 1.52-

Add a comment
Know the answer?
Add Answer to:
An aluminum block weighing 32 kg initially at 140°C is brought into contact with a block...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • my work С 2 10 points An aluminum block weighing 22 kg initially at 140°C is...

    my work С 2 10 points An aluminum block weighing 22 kg initially at 140°C is brought into contact with a block of iron weighing 24 kg at 60°C in an insulated enclosure. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of aluminum at 400 Kis Cp = 0.949 kJ/kg.K. The specific heat of iron at room temperature is Cp = 0.45 kJ/kg.K. 01:56:29 The final equilibrium temperature is K. The total...

  • A 70-kg copper block initially at 140'C is dropped into an insulated tank that contains 90...

    A 70-kg copper block initially at 140'C is dropped into an insulated tank that contains 90 L of water at 10'C. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of water at 25°C is cp=418 kJ/kg-K. The density of water is 997 kg/m2. The specific heat of copper at 27°C is Cp=0.386 kJ/kg.K. Water Copper 90 L The final equilibrium temperature is OK The total entropy change during this process is OKJ/K.

  • A 46 kg copper block initially at 140°C is dropped into an insulated tank that contains...

    A 46 kg copper block initially at 140°C is dropped into an insulated tank that contains 90 L of water at 10°C. Determine the final equilibrium temperature and the total entropy change for this process. The specific heat of water at 25°C is Cp= 4.18 kJ/kg-K. The density of water is 997 kg/m3. The specific heat of copper at 27°C is cp=0.386 kJ/kg-K. Water Copper 90 L The final equilibrium temperature is 15.85 K. The total entropy change during this...

  • A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped...

    A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped into a large lake at 15°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and the lake water. Determine the total entropy change for this process. The specific heat of Iron at room temperature is cp0.45 kJ/kg.K. The specific heat of copper at 27°C is ep 0,386 kJ/kg.K. Iron Lake 15°C Copper The total entropy change...

  • Problem 2: (10 pts) A 30-kg iron block at initial temperature 200°C and a 40-kg copper...

    Problem 2: (10 pts) A 30-kg iron block at initial temperature 200°C and a 40-kg copper block at initial temperature 100°C are dropped into a very large lake at 20°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and lake water. Both blocks have constant specific heats, i.e. Ciron = 0.45 kJ/kg. K and Ccopper = 0.386 kJ/kg. K. Hint: The very large lake can be treated as a heat reservoir and...

  • Problem 7.30 You place into an insulated container a 1.8 kg block of aluminum at a...

    Problem 7.30 You place into an insulated container a 1.8 kg block of aluminum at a temperature of 43°C in contact with a 2.4 kg block of copper at a temperature of 18°C. The specific heat of aluminum is 0.91 J/K/g and the specific heat of copper is 0.391/K/g, what is the final temperature of the two blocks? oC the tolerance is +/-296

  • 3. A 100 g block of copper initially at 60°C is placed in contact with a...

    3. A 100 g block of copper initially at 60°C is placed in contact with a 300 g block of aluminum initially at 30°C in an insulated container. A. Identify the block that loses thermal energy. (5 pts) B. Calculate the final equilibrium temperature of the two blocks. (15 pts) Copper a(Cu) = 17 x 10-61°C Ccu = 0.0923 cal/g.K = 386 J/kg-K LF (Cu) = 207 kJ/kg

  • Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140...

    Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R = 0.2968 kJ/kg.K. The constant volume specific heat of nitrogen at room temperature is cy" 0.743 kJ/kg.K. (Round the final...

  • 6: A 50 kg copper block initially at 80 C is dropped into a lake at...

    6: A 50 kg copper block initially at 80 C is dropped into a lake at 15 C. Thermal equilibrium is established after a while as a resul the lake water. The specific heat copper at roorm temperature is c,-0.386 kJ/kg°C. Assuming the surroundings to be at 20 c t of heat transfer between the b lock and a. Determine the internal energy change and the entropy change of the copper. b. Determine the total entropy change for this process....

  • A block of steel weighing m = 100 kg and having initial temperature 700 °C is...

    A block of steel weighing m = 100 kg and having initial temperature 700 °C is placed into a very large body of water at 27 °C and cooled to that same temperature. The specific heat of steel is Cs = 0.468 k] kg-K The entropy change of the steel is calculated by using S2 – = 350 = 12 Csat, where Cş has units k] and is constant during the cooling process. Calculate S2 – S1 (“big delta s.”)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT