Question

P (a) (b) +29 ( c) + -Q (d) FIGURE 21-34 Electric field lines for four arrangements of charges.E P R do EXAMPLE 21-12 Uniformly charged disk. Charge is distributed uniformly over a thin circular disk of radius R. The chaIn what way does equation 21-12 fail to represent the lines of force of figure 21-34a if we relax the requirement that x » d?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

E= Leo Constant. Electric field is independent of distank. this result is failed at End of charge Electric Held is not consta

Add a comment
Know the answer?
Add Answer to:
P (a) (b) +29 ( c) + -Q (d) FIGURE 21-34 Electric field lines for four...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.1 In this problem we find the electric field on the axis of a cylindrical shell...

    2.1 In this problem we find the electric field on the axis of a cylindrical shell of radius R and height h when the cylinder is uniformly charged with surface charge density . The axis of the cylinder is set on the z-axis and the bottom of the cylinder is set z = 0 and top z = h. We designate the point P where we measure the electric field to be z = z0. (See figure.) You will use...

  • 4. A flat disk of radius R, carrying a uniform charge density + ơ, is rotating at a constant angu...

    4. A flat disk of radius R, carrying a uniform charge density + ơ, is rotating at a constant angular velocity o. a) What is the magnitude of the surface current density K at a distance s from the ccnicr f the disk? b) Calculate the magntic field (magnitude and direction) at a point P located on the axis of the disk. [Hint: Treat the disk as a collection of rings of width dr. The current in each ring is...

  • Exercise 23.7 Hints: Getting Started | I'm Stuck A rod 12.5 cm long is uniformly charged...

    Exercise 23.7 Hints: Getting Started | I'm Stuck A rod 12.5 cm long is uniformly charged and has a total charge of -27.0 PC. (a) Determine the magnitude of the electric field along the axis of the rod at a point 31.0 cm from its center. E = 13433.80109 X N/C It might be helpful to carefully follow through the example to make sure you understand the solution. (b) Determine the direction of the electric field along the axis of...

  • 4. In lecture we derived the electric field a distance z above the center of a...

    4. In lecture we derived the electric field a distance z above the center of a thin ring of charge and a uniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius Ri and an outer rads R2 (alternatively, you can describe this as a disk of rads 2 with a circular hole of radius R). Do this two ways: by directly performing an...

  • The magnitude of the net electric field at a distance x from the center and on...

    The magnitude of the net electric field at a distance x from the center and on the axis of a uniformly charged ring of radius r and total charge q is given by Enet = kqx (x2 + r2)3/2 . Consider two identical rings of radius 12.0 cm separated by a distance d = 24.6 cm as shown in the diagram below. The charge per unit length on ring A is −4.30 nC/cm, while that on ring B is +4.30...

  • Uniformly Charged Disk Part A The figure below shows a thin uniformly charged disk with surface...

    Uniformly Charged Disk Part A The figure below shows a thin uniformly charged disk with surface charge density σ and radius R. Imagine the disk divided into rings of varying radii r. Find an expression for the charge dą on a ring with radius r and thickness dr. Your expression should be in terms of the given variables and other known constants such as k Greek letters should be spelled out, for example type sigma" without the quotations for σ...

  • 1. Find the electric field (in vacuum) as a function of position z along the axis...

    1. Find the electric field (in vacuum) as a function of position z along the axis of a uniformly charged disk of outer radius R with a hole of radius Ri in its centre. The charge per unit area on the disk is σ. 2. A straight rod, with uniform charge λ per unit length, lies along the z axis from z=11 to z=12. (Thus, the length of the rod is 12-11.) Find the x and y components of the...

  • ● În lecture we derived the electric field ǎ distance z above the center of thin...

    ● În lecture we derived the electric field ǎ distance z above the center of thin ring of charge ad ă iniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius R1 and an outer radius R2 (alternatively, you can describe this as a disk of radius R2 with a circular hole of radius R1). Do this two ways: by directly performing an integral...

  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field.

    Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 4.60R from the disk (see Figure (a)). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/4.60 (see Figure (b)). Assume that the ring will have the same surface charge...

  • strie field associated with charge distributed evenly ell located at its center. Furthermore, the 1. The...

    strie field associated with charge distributed evenly ell located at its center. Furthermore, the 1. The Shl There is a statement about the electric field associated with charge din over a spherical shell. The theorem states that at all lehall The theorem states that at all points outside the shell the electric field as that of a main charge containing all the charge on the shell located at its center the them states that the electric field inside the shell...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT