Question
please provide a detailed answer to part (e) only

Thanks

A2 2013 2. Consider the feedback system in Figure 3 in which G(8) gain. S-2 and K(8) = K is a $ +2 variable 3. + R(S) E (5) D
0 0
Add a comment Improve this question Transcribed image text
Answer #1

atb = 2 = a + b =4 -ean a-b=2 - egna from Eq n and ean G 923 and b=1 Now Kess ما is given by (6+3) (3+1) KIS) = e -3 from pol

Add a comment
Know the answer?
Add Answer to:
please provide a detailed answer to part (e) only Thanks A2 2013 2. Consider the feedback...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please explain part b and C in detail. Figure 6 shows a feedback control system for...

    Please explain part b and C in detail. Figure 6 shows a feedback control system for which G(s) = 6 (s + 1)3 J' and K(s) is the transfer function of a compensator. (a) Sketch the Nyquist diagram of G(s) evaluating the real-axis intercepts and their corre- sponding frequencies. [10 marks] (b) Show that the closed-loop system will oscillate at frequency w = V3 rad s-1 when the closed-loop gain is K = ? (5 marks] (c) Design a proportional-derivative...

  • The Nyquist plot of a plant P in a unity feedback system is shown below. It is know that P has on...

    The Nyquist plot of a plant P in a unity feedback system is shown below. It is know that P has one pole with a non-negative real part. 6.13 The Nyquist plot of a plant P in a unity feedback system is shown below. It is known that P has one pole with non-negative real part 1. What is the number of poles of P with zero real part? 2. What is the number of unstable poles of P? 3....

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controll...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller Sketch (by hand) and fully label a Nyquist plot with K-1 for each of the plants listed below.Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s)-2 (b) P(s)-1s3 (c) P(s) -4-8 s+2 (s-2) (s+10) 1. Consider the usual unity-feedback closed-loop control system with a...

  • Q.3(a) Transfer function model of a plant is, G(s) The controller is Ge(s)-K, where K is a constant. Find the value of K such that steady-state error for unit ramp input is 0.1. Find the gain margin...

    Q.3(a) Transfer function model of a plant is, G(s) The controller is Ge(s)-K, where K is a constant. Find the value of K such that steady-state error for unit ramp input is 0.1. Find the gain margin and the phase mar gin (6 marks) (b) What are the effects on gain margin, phase margin and steady-state error, if the gain K is increased? (3 marks (c) Can the closed loop be unstable if the controller of Q.3(a) is implemented digi...

  • A2. (a) Explain how the open-loop polar plot can be used to assess closed-loop stability by...

    A2. (a) Explain how the open-loop polar plot can be used to assess closed-loop stability by applying Nyquist's stability criterion. Apply Nyquist's stability criterion to determine the stability condition for a closed-loop system that is unstable in the open-loop. [30%] = K (b) An unstable system has transfer function given by G(S) in which the gain K is S(S-2) positive. A derivative compensator H(s) = 0.5s + 1 is inserted in the negative feedback path to form a control loop....

  • Discuss the mathematical requirements for stability in a linear feedback system and state the Rou...

    Discuss the mathematical requirements for stability in a linear feedback system and state the Routh Stability criterion. (6 marks) (a) The open loop transfer function of a control system with unity feedback is given by: (b) 35 s(1 + Ts) (1 +0.25s) G(s) - Use Routh's criterion to determine the value of T for which the closed loop system is marginally stable. (8 marks) i Use the Nyquist criterion to confirm the values obtained in (i). (8 marks) ii Sketch...

  • Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2...

    Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2 Consider the system shown in the above figure, where G(s) = s(8+1128+1) a) Draw a Bode diagram of the open-loop transfer function G(s) when K=1. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K=1? c) Determine the range of K for which the closed-loop systems will be stable. d) Verify your answer in (c) using...

  • Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) -...

    Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) - under the control of a lead compensator (a) Using the Routh's stability criterion, determine the conditions on k and a so that the closed-loop system is stable, and sketch the region on the (k, a)- plane where the conditions are satisfied. Hence, determine the minimum value of k for the lead compensator to be a feasible stabilizing controller. (10 marks) (b) Suppose α-2. Given...

  • (i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes...

    (i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes marginally stable and the practical range of safe operating gains for the proportional controller. (ii) Find the gain margin of the system when the operating gain of the controller Kp = 2. Use Fig. 2 to read the required values off the plot. Proportional Controller Process R(S) Y() Figure 1: Unity Feedback Systems Consider again the system in Fig. 1. The plant transfer function...

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller: 19 r - PGS-Try...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller: 19 r - PGS-Try P(s) Draw (by hand) and fully label a Nyquist plot with K = 1 for each of the plants listed below. Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s) = (b) P(s) = s(s+13 (6+2) (©) P(s) = 32(6+1)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT