Question

Proportional Controller Process R(S) Y() Figure 1: Unity Feedback SystemsConsider again the system in Fig. 1. The plant transfer function in the frequency domain is 100 G(jw) = (w + 2)(w + 4)(w +10)

(i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes marginally stable and the practical range of safe operating gains for the proportional controller.

(ii) Find the gain margin of the system when the operating gain of the controller Kp = 2. Use Fig. 2 to read the required values off the plot.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

252 GM= - 1 & Glupo) 25kp 252 25kp Given kepa2 252 - GM= 5.04 25 (2) am In dp = 20log (5:04) = 14.04.de

Add a comment
Know the answer?
Add Answer to:
(i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus...

    Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus Plots and Routh- Hurwitz Criterion ofStability A unit feedback control system is to be stabilized using a Proportional Controller, as shown in Figure Q2.1. Proportional Controller Process The process transfer function is described as follows: Y(s) G(s) s2 +4s 100 s3 +4s2 5s 2 Figure Q2.1 Your task is to investigate the stability of the closed loop system using s-domain analysis by finding: a)...

  • Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5...

    Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5) A proportional controller is used to control the system as shown in Figure 6 below: Y(s) R(s) + G(s) Figure 6: A control system with a proportional controller a) Assume Hp(s) is a proportional controller with the transfer function H,(s) kp. Determine, using the Routh-Hurwitz Stability Criterion, the value of kp for which the closed-loop system in Figure 6 is marginally stable. (6...

  • Determine the proportioanl gain constant Kp and T such that the bandwidth of the closed-loop system...

    Determine the proportioanl gain constant Kp and T such that the bandwidth of the closed-loop system is around 0.55 rad/sec and an overshoot of around 9%. Note that the closed-loop bandwidth is close to the gain crossover (cut-off) frequency. Check your design in both frequency and time domain and comment. Determine the maximum overshoot and settling time. Determine as well, using a Bode diagram, the expression of the stead state closed loop output for a sinusodial input with 0 deg...

  • b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b)....

    b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b). Nyqulst Diagram x 10 1.5 1- System: N Real: -9.08e-005 0.5- Imag: -5.62e-006 Frequency (rad/sec): -104 -0.5 -15 -1.5 0.5 0.5 1.5 1 2.5 3.5 Real Axis x 10 Figure Q5(b) K If the transfer function of the system is given as G(s) (s+10)(s+50)(s+150) determine the following: The closed loop stability of the system using Nyquist Stability Criterion. i) ii) Gain margin and phase...

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controll...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller Sketch (by hand) and fully label a Nyquist plot with K-1 for each of the plants listed below.Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s)-2 (b) P(s)-1s3 (c) P(s) -4-8 s+2 (s-2) (s+10) 1. Consider the usual unity-feedback closed-loop control system with a...

  • 2. Consider the closed-loop system shown below Here Kp represents the gain of a proportional controller, and the proces...

    2. Consider the closed-loop system shown below Here Kp represents the gain of a proportional controller, and the process transfer function is given by . (a) Sketch the locus of the closed-loop poles as the proportional gain, Kp, varies from 0 to ∞. Be sure to clearly mark poles, zeros, asymptotes, angles of arrival/departure, break-in/away points, and real axis portion of the locus. (b) Using Routh's array, determine the range of the proportional gain, Kp, for which the closed-loop system...

  • Find a & b Figure 1 shows a closed-loop control system in which G(S)-40/1 (S+2) (S+3)],...

    Find a & b Figure 1 shows a closed-loop control system in which G(S)-40/1 (S+2) (S+3)], and H(S)-1/(S+4) Y(s) H(s) Figure 2 shows the Nyquist plot for the open-loop transfer function. System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 Using the Nyquist criterion a) Find out the gain margin expressed in dB. Is the system stable or unstable? (25 points) b) What is the value of the gain expressed in dB that makes the system marginally stable? (25 points)

  • A closed-loop unity feedback system has the loop gain G(z) given below. (a) Show that the...

    A closed-loop unity feedback system has the loop gain G(z) given below. (a) Show that the system is unstable using the Routh-Hurwitz criterion. (b) Show that the system is unstable by examining its Nyquist plot. (c) Use MATLAB to determine the gain margin of the system. (d) Now decrease the gain of the system by approximately 1 dB by setting G(z) 3. equal to Gn(z) as given below and show that the resulting system is stable by repeating steps (a)...

  • 2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the...

    2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the expressions for the real and imaginary parts of G(jo). b) What happen to the real and imaginary parts of G(jo) for ω 0 and for Are there values of ω that either the real or imaginary part goes to zero? If not, compute Gijo) for some ovalue, say,, or 2, to help you sketch the Polar plot of Gja). c) d) Use Matlab to...

  • A unity feedback closed loop control system is displayed in Figure 4. (a) Assume that the control...

    Please solve as a MATLAB code. A unity feedback closed loop control system is displayed in Figure 4. (a) Assume that the controller is given by G (s) 2. Based on the lsim function of MATLAB, calculate and obtain the graph of the response for (t) at. Here a 0.5°/s. Find the height error after 10 seconds, (b) In order to reduce the steady-state error, substitute G (s) with the following controller This is a Proportional-Integral (PI) controller. Repeat part...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT