Question

In large steam power plants, the feedwater is frequently heated in a closed feedwater heater by...

In large steam power plants, the feedwater is frequently heated in a closed feedwater heater by using steam extracted from the turbine at some stage. Steam enters the feedwater heater at 1 MPa and 215°C and leaves as saturated liquid at the same pressure. Feedwater enters the heater at 2.5 MPa and 50°C and leaves at 10°C below the exit temperature of the steam. Determine the ratio of the mass flow rates of the extracted steam and the feedwater. The enthalpies of steam and feedwater are h1 = 2862.74 kJ/kg, h2 = 762.51 kJ/kg, T2 = 179.9°C, h3 = 209.34 kJ/kg, and h4 = 718.55 kJ/kg.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

steam h2=762.51 kolly closed feed water heater P=1MPa 215 c Impa, Ta Pa mist Esat = Ty=179.96 h = 2862.74 Folky ③ is Mech, f

Add a comment
Know the answer?
Add Answer to:
In large steam power plants, the feedwater is frequently heated in a closed feedwater heater by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1 In large steam power plants, the feedwater is frequently heated in closed feedwater heaters...

    Problem 1 In large steam power plants, the feedwater is frequently heated in closed feedwater heaters (basically heat exchangers) by steam extracted from the turbine at some stage. Steam enters the feedwater heater at 1 MPa and 200°C and leaves as saturated liquid at the same pressure. Feed water enters the heater at 2.5 MPa and 50°C and leaves at 10°C below the exit temperature of the steam. Neglecting any heat losses from the outer surfaces of the heater, determine...

  • P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at...

    P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at 20 MPa, 600°C. Between the high and low-pressure turbines, steam at 1 MPa is extracted and delivered to the closed feedwater heater. Feedwater exits the feedwater heater at 20 MPa and the saturation temperature of the 1-MPa steam; saturated liquid condensate is fed through a steam trap back to the condenser. Steam from the second- stage turbine enters the condenser at 10 kPa, and...

  • In steam power plants, open feedwater heaters are frequently used to heat the feedwater bylon mixing...

    In steam power plants, open feedwater heaters are frequently used to heat the feedwater bylon mixing it with steam bled off the turbine at an intermediate stage. Consider an feedwater heater that operates at a pressure of 1000 kPa. Feedwater at 50°C and 1000 kPa is to be heated by mixing it with superheated steam at 200°C and 1000 kPa. In an ideal feedwater heater, the mixture leaves the heater as saturated liquid at the feedwater pressure. Determine the ratio...

  • 6-65 In steam power plants, open feedwater heaters are frequently utilized to heat the feedwater by...

    6-65 In steam power plants, open feedwater heaters are frequently utilized to heat the feedwater by mixing it with steam bled off the turbine at some intermediate stage. Con- sider an open feedwater heater that operates at a pressure of 1000 kPa. Feedwater at 50°C and 1000 kPa is to be heated with superheated steam at 200°C and 1000 kPa. In an ideal feedwater heater, the mixture leaves the heater as saturated liquid at the feedwater pressure. Determine the ratio...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater....

    Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater. Superheated vapor enters the turbine at 12 MPa, 480°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine where some is extracted and diverted to a closed feedwater heater at 0.7 MPa. Condensate drains from the feedwater heater as saturated liquid at 0.7 MPa and is trapped into the condenser. The feedwater leaves the heater at 10 MPa and a...

  • Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open...

    Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open one, and reheat. Steam enters the first turbine stage at 12 MPa, 480°C, and expands to 2 MPa. Some steam is extracted at 2 MPa and fed to the closed feedwater heater. The remainder is reheated at 2 MPa to 440°C and then expands through the second-stage turbine to 0.3 MPa, where an additional amount is extracted and fed into the open feedwater heater...

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 500°C and expands to 0.8 MPa. The steam is reheated to 500°C before entering the second turbine, where it expands to the condenser pressure of 10 kPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 200°C and 8.0...

  • Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 12.0 MPa, 520C and expands to 0.6 MPa. The steam is reheated to 480C before entering the second turbine, where it expands to the condenser pressure of 0.006 MPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205C and 8.0...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 28 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT