Question

Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater....

Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater. Superheated vapor enters the turbine at 12 MPa, 480°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine where some is extracted and diverted to a closed feedwater heater at 0.7 MPa. Condensate drains from the feedwater heater as saturated liquid at 0.7 MPa and is trapped into the condenser. The feedwater leaves the heater at 10 MPa and a temperature equal to the saturation temperature at 0.7 MPa. The flow rate of steam entering the first-stage turbine is 50 kg/s.

(a) the heat transfer to the working fluid passing through the steam generator, in kJ per kg of steam entering the first-stage turbine. (b) the thermal efficiency. (c) the heat transfer from the working fluid passing through the condenser to the cooling water, in kJ per kg of steam entering the first-stage turbine.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open...

    Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open one, and reheat. Steam enters the first turbine stage at 12 MPa, 480°C, and expands to 2 MPa. Some steam is extracted at 2 MPa and fed to the closed feedwater heater. The remainder is reheated at 2 MPa to 440°C and then expands through the second-stage turbine to 0.3 MPa, where an additional amount is extracted and fed into the open feedwater heater...

  • Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 12.0 MPa, 520C and expands to 0.6 MPa. The steam is reheated to 480C before entering the second turbine, where it expands to the condenser pressure of 0.006 MPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205C and 8.0...

  • P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at...

    P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at 20 MPa, 600°C. Between the high and low-pressure turbines, steam at 1 MPa is extracted and delivered to the closed feedwater heater. Feedwater exits the feedwater heater at 20 MPa and the saturation temperature of the 1-MPa steam; saturated liquid condensate is fed through a steam trap back to the condenser. Steam from the second- stage turbine enters the condenser at 10 kPa, and...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s...

    Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s entres the first-stage turbine at a pressure of 14 MPa Each turbine stage has an isentropic efficiency of 90%. The temperature of the inlet vapour is 520°C. The steam expands through the first-stage turbine to a pressure of 0.9MPa where some of the steam is...

  • Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor...

    Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 80%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency....

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 480 C and expands to 0.7 MPa. The steam is reheated to 440°C before entering the second turbine, where it expands to the condenser pressure of 0.008 MPa Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205 C...

  • 5. (60 points) Water is the working fluid in a regenerative Rankine cycle with one closed...

    5. (60 points) Water is the working fluid in a regenerative Rankine cycle with one closed feedwater heater. Superheated vapor enters the first turbine at 15 MPa and 550°C. The cycle has a closed feedwater heater using extracted steam at 1 MPa. Condensate drains from the feedwater heater as saturated liquid at 1MPa and is trapped into the condenser. The feedwater leaves the heater at 15 MPa and a Temperature equal to the saturation temperature at IMPa. The mass flow...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 500°C and expands to 0.8 MPa. The steam is reheated to 500°C before entering the second turbine, where it expands to the condenser pressure of 10 kPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 200°C and 8.0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT