Question

0 0 Determine whether the set O 0 is a basis for R3. If the set is not a basis, determine whether the set is linearly indepen

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Definitions:

Let V be a vector space over the field \mathbb{F} and \{v_1,v_2,...,v_n\}\subset V .

1). Then we say that the set \{v_1,v_2,...,v_n\} is Linearly Independent if

  c_1v_1+c_2v_2+...+c_nv_n=0\ \Rightarrow c_1=c_2=...=c_n=0 where

  each\ c_i\in \mathbb{F},i=1,2,...,n.

2). We say the set \{v_1,v_2,...,v_n\} spans V if for any v\in V there exists c_1,c_2,...,c_n\in \mathbb{F}

such that  v=c_1v_1+c_2v_2+...+c_nv_n.

3). we say the set \{v_1,v_2,...,v_n\} is a basis for  V if \{v_1,v_2,...,v_n\} is linearly independent and

  \{v_1,v_2,...,v_n\} spans  V.

Given that \begin{Bmatrix} \begin{bmatrix} 0\\0 \\1 \end{bmatrix},\begin{bmatrix} 1\\0 \\1 \end{bmatrix},\begin{bmatrix} 0\\0 \\0 \end{bmatrix} \end{Bmatrix}\subset \mathbb{R}^3 .

Then \begin{Bmatrix} \begin{bmatrix} 0\\0 \\1 \end{bmatrix},\begin{bmatrix} 1\\0 \\1 \end{bmatrix},\begin{bmatrix} 0\\0 \\0 \end{bmatrix} \end{Bmatrix} is not a basis.

The set  \begin{Bmatrix} \begin{bmatrix} 0\\0 \\1 \end{bmatrix},\begin{bmatrix} 1\\0 \\1 \end{bmatrix},\begin{bmatrix} 0\\0 \\0 \end{bmatrix} \end{Bmatrix} is not Linearly Independent because for any scalar  c(\neq 0)\in \mathbb{R} we have

0 \begin{bmatrix} 0\\0 \\1 \end{bmatrix}+0\begin{bmatrix} 1\\0 \\1 \end{bmatrix}+c\begin{bmatrix} 0\\0 \\0 \end{bmatrix}=\begin{bmatrix} 0\\0 \\0 \end{bmatrix} which violating definition (1).

Also the set \begin{Bmatrix} \begin{bmatrix} 0\\0 \\1 \end{bmatrix},\begin{bmatrix} 1\\0 \\1 \end{bmatrix},\begin{bmatrix} 0\\0 \\0 \end{bmatrix} \end{Bmatrix} does not spans because for any vector \begin{bmatrix} 0\\a \\0 \end{bmatrix}\in \mathbb{R}^3 \ where\ a(\neq 0)\in \mathbb{R}

there does not exists scalars c_1,c_2,c_3\in \mathbb{R} such that c_1\begin{bmatrix} 0\\0 \\1 \end{bmatrix}+c_2\begin{bmatrix} 1\\0 \\1 \end{bmatrix}+c_3\begin{bmatrix} 0\\0 \\0 \end{bmatrix}=\begin{bmatrix} 0\\a \\0 \end{bmatrix} .

As is there exists such scalars then

  c_1\begin{bmatrix} 0\\0 \\1 \end{bmatrix}+c_2\begin{bmatrix} 1\\0 \\1 \end{bmatrix}+c_3\begin{bmatrix} 0\\0 \\0 \end{bmatrix}=\begin{bmatrix} 0\\a \\0 \end{bmatrix}

\Rightarrow \left.\begin{matrix} c_2=0\\0=a\\c_1+c_2=0 \end{matrix}\right\}

which is a contradiction as a\neq0 .

Hence option (D) is correct.

Add a comment
Know the answer?
Add Answer to:
0 0 Determine whether the set O 0 is a basis for R3. If the set...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT