Question

PS: Answer only four questions! 1. (a) Define stress and strain obtained from tension test. Using the stress (0)- strain (8)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

o 1 Stress is the internal resisting force offered by the specimen undergoing tension test per unit cross sectional area, whe(i) Modulus of Elasticity Consider only till linear zone, 400 - 0 450 0.006-0 0.006 75000 MPa = 75 Gla DE b) Giren, load on N

If this is helpful, please UPVOTE. Thank you !!

Add a comment
Know the answer?
Add Answer to:
PS: Answer only four questions! 1. (a) Define stress and strain obtained from tension test. Using...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify...

    5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify the mechanical properties of the material. (4 marks) II. Identify the following and label them in the graph. (12 marks) • Young's modulus Yield strength Elongation Ultimate tensile strength THEORETICAL BACKGROUND Equations: Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) d? E = Sy Ey Sr Pu А %EL Extension at fracture Gauge Length Where: A: Cross- Sectional Area...

  • 3. In a stress–strain curve from a tension test, the specimen begins to neck and the...

    3. In a stress–strain curve from a tension test, the specimen begins to neck and the elongation between the gage marks is no longer uniform once the load is beyond . a) yield strength b) proportional limit c) ultimate tensile strength d) Fracture stress 4. The two parameters that can define ductility are _____ and _______. a) elongation b) engineering strain c) reduction of area c) poisson’s ratio

  • (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The...

    (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The modulus of elasticity b) The yield strength at a strain offset of 0.002 c) Tensile strength d) The Ductility (percentage of 300 200 elongation, %EL) e) The Modulus of resilience f) Strain at 350 Mpa stress g) Strain at 150 Mpa stress 200 100 100 0.005 0.30 0.40 0.10 trein 0.20

  • Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length...

    Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length = 50 mm and its cross-sectional area = 100 mm. The specimen yields at 48,000 N, and the corresponding gage length - 50.23 mm. This is the 0.2 ent yield point. The maximum load of 87,000 N is reached at a gage length 64.2 mm. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength. (d) If fracture occurs at a gage...

  • manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain...

    manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain curve from one uniaxial tension test for an engineering metals that shows power law strain hardening (e.g. aluminum or steel), within the same plot, and identify, from the curves, the material property parameters of: Yield strength (0.2% offset) Uniform engineering strain ultimate tensile strength (eng.) true stress and true strain at the onset of necking K and n from power-law fitting (the range of...

  • Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d...

    Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d = 7.42, lo = 40mm (4 marks) Load, KN Extension, mm Stress, MPa Strain 0 0 10 0.05 17 0.08 25 0.11 30 0.14 34 0.20 37.5 0.40 38.5 0.60 36 0.90 Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) A = T d2 4 E = Sy Ey ST = PU A %EL = Extension at fracture Gauge...

  • Stress (MPa) Strain (mm/mm) 0 Q-1 (30 pts) Data taken from a stress-strain test for a...

    Stress (MPa) Strain (mm/mm) 0 Q-1 (30 pts) Data taken from a stress-strain test for a ceramic are given in the table. The curve is linear between the origin and the first point. Plot the diagram, and determine: a. Modulus of elasticity b. Modulus of resilience (ur) c. Modulus of toughness(u) 226 309 337 350(fracture) 0.0006 0.0010 0.0014 0.0018

  • 2) Using the stress-strain curve for a steel alloy shown in the following figure answer the...

    2) Using the stress-strain curve for a steel alloy shown in the following figure answer the following questions: 600 500 400 500 400 300 300 200 200 100 100 0.000 0.002 0.006 0.004 Strain 0.00 0,04 0.08 0.12 0.16 0.20 Using the same steel alloy, consider a cylindrical specimen 15 mm in diameter pulled in tension, if a load of 85,000 N is applied: h) Calculate the approximate ductility in percent elongation, (consider the final elongation as the elongation at...

  • Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d= 7.42, lo = 40mm (4...

    Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d= 7.42, lo = 40mm (4 marks) Load, KN Extension, mm Stress, MPa Strain 0 0 0 0 # 10 0.05 0.0002312 0.00125 17 0.08 0.0003931 0.002 4 25 0.11 0.0005781 0.00275 5 0.14 0.0006937 0.00350 30 34 0.20 0.005 37.5 0.40 0.01 0.0007862 8 0.0008672 2 0.0008903 5 0.0008325 3 38.5 0.60 0.015 36 0.90 0.0225 Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL)...

  • Given the following data from a tensile test. Show your calculations for the following: Tensile Stress...

    Given the following data from a tensile test. Show your calculations for the following: Tensile Stress Modulus of Elasticity (Young’s Modulus) Yield Strength Percentage of elongation Percentage of reduction in area The following data were collected from a 12-mm-diameter test specimen of magnesium (l. = 30.00 mm): 250 Vielding 0.2% offset Load (N) 0 5,000 10,000 15,000 20,000 25,000 26,500 27,000 26,500 25,000 Gage Length (mm) 0.0000 0.0296 0.0592 0.0888 0.15 0.51 0.90 1.50 (maximum load) 2.10 Stress (MPa) oro...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT