Question

3. In a stress–strain curve from a tension test, the specimen begins to neck and the...

3. In a stress–strain curve from a tension test, the specimen begins to neck and the elongation between the gage marks is no longer uniform once the load is beyond .

a) yield strength b) proportional limit c) ultimate tensile strength d) Fracture stress

4. The two parameters that can define ductility are _____ and _______.

a) elongation b) engineering strain c) reduction of area c) poisson’s ratio

0 0
Add a comment Improve this question Transcribed image text
Answer #1

DYM a) yield Strength :- The point after which the material begine to deform plastically i.e. the point after which nonlinear6) proportional limiti in the stress-strain Curve the point upto which oat & Hookes law is strictly valid upto this point ond) Fracture stress in the curve after which physically. last the point on stress-strain material separates4) The - two two parameters paramet that define ductility are elongation and reduction in Area % elongation a change in lengt

Add a comment
Know the answer?
Add Answer to:
3. In a stress–strain curve from a tension test, the specimen begins to neck and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain...

    manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain curve from one uniaxial tension test for an engineering metals that shows power law strain hardening (e.g. aluminum or steel), within the same plot, and identify, from the curves, the material property parameters of: Yield strength (0.2% offset) Uniform engineering strain ultimate tensile strength (eng.) true stress and true strain at the onset of necking K and n from power-law fitting (the range of...

  • A Grade 2 Titanium tension test specimen has a diameter of 12.60 mm and a gage...

    A Grade 2 Titanium tension test specimen has a diameter of 12.60 mm and a gage length of 50 mm. In a test to fracture, load and deformation data obtained during the test are given in the accompanying table. Plot the stress strain relationship then, determine the following: (a) the modulus of elasticity. (b) the proportional limit. (c) the yield strength (0.20% offset). (d) the ultimate strength. (e) the fracture stress. (f) the true fracture stress if the final diameter...

  • Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length...

    Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length = 50 mm and its cross-sectional area = 100 mm. The specimen yields at 48,000 N, and the corresponding gage length - 50.23 mm. This is the 0.2 ent yield point. The maximum load of 87,000 N is reached at a gage length 64.2 mm. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength. (d) If fracture occurs at a gage...

  • please be very 100% sure before doing. thank you (1) (25 points) Load-elongation dataset were obtained...

    please be very 100% sure before doing. thank you (1) (25 points) Load-elongation dataset were obtained from a tensile test of high-strength steel as shown in the table. The test specimen had a diameter of 0.505 in. and a gage length of 2.00 in. The Poisson's ratio of high-strength steel is found to be 0.33 At fracture, the elongation between the gage marks was 0.12 in and the minimum diameter was 0.42 in 1) Plot the engineering stress-strain curve using...

  • Will rate if everything is complete. In the space below, sketch the generalized stress-strain behavior for...

    Will rate if everything is complete. In the space below, sketch the generalized stress-strain behavior for a typical metal, such as annealed brass. On your sketch, clearly identify each of the metal, such as annealed brass. On your sketch, clearly identify each of the following. a. 0.2% offset yield strength b. Young's modulus c. Proportional limit d. Ultimate tensile strength Onset of localized plastic deformation е. f. Region of uniform plastic deformation g. Fracture strength h. Ductility i. Toughness Modulus...

  • Figure (a) shows the stress strain relations for two different materials, A and B. Between A...

    Figure (a) shows the stress strain relations for two different materials, A and B. Between A and B, which one has higher strength? stress B strain Figure (a) O A. Material A OB. Material B Figure (a) shows the stress strain relations for two different materials, A and B. Figure (b) is a schematic of the catastrophic failure of a Liberty ship. Between A and B. which material could have been used in construction of the ship and caused this...

  • A test specimen in a tensile test has a gage length of 2.0 in and an area 0.5 in". During the test the Specimen...

    A test specimen in a tensile test has a gage length of 2.0 in and an area 0.5 in". During the test the Specimen yields strength of the material 64,000 lb/in . The corresponding gage length a 2.0083 in. This is the 0.2 percent yield point. The tensile strength of material 120,000 Ib/in? is reached at a gage length 2.60 in. Determine (a) load at yield point, (b) modulus of elasticity, and (c) maximum load. (d) At the point of...

  • 2) Using the stress-strain curve for a steel alloy shown in the following figure answer the...

    2) Using the stress-strain curve for a steel alloy shown in the following figure answer the following questions: 600 500 400 500 400 300 300 200 200 100 100 0.000 0.002 0.006 0.004 Strain 0.00 0,04 0.08 0.12 0.16 0.20 Using the same steel alloy, consider a cylindrical specimen 15 mm in diameter pulled in tension, if a load of 85,000 N is applied: h) Calculate the approximate ductility in percent elongation, (consider the final elongation as the elongation at...

  • 1. A tensile test was performed using a standard 0.505 in. diameter specimen (Do 0.505 in)...

    1. A tensile test was performed using a standard 0.505 in. diameter specimen (Do 0.505 in) of 4140 steel with 2 inch initial gage length (Lo 2.00 in), and the following were determined: . Elastic Modulus (E)-30 x 106 psi Yield Strength (To) = 60,000 psi Strain at maximum load = 0.15 .Breaking Load (Pbreak) 15,000 lbs Maximum Load (Pa) 20,000 lbs 0 % Elongation-25% . a. (3 points) Calculate the stress at the break point: b. (5 points) Calculate...

  • A bar of aluminum is tested under tension, the specimen has a rectangular n with dimensions...

    A bar of aluminum is tested under tension, the specimen has a rectangular n with dimensions of 4 mm by 20 mm. The initial length of the sample is 60 mm, the load (force) versus elongation (Aに!finalㅢinitial) graph of this specimen is shown below. a) Determine the ultimate tensile strength. b) Young's modulus c) Total strain after failure 100 63 Fracture ー30 2 3 4 5 Elongation, mm .2 0

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT