Question

A test specimen in a tensile test has a gage length of 2.0 in and an area 0.5 in. During the test the Specimen yields streng
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given, 1 2 2,0 in A 2 0.5 in 64000 lbfin strength () gteld 2 gage lougth z 2.00 83 , Tensile streugta (O) = 120,000 at yleld2 load c) Mazimu maxi load 2 Ot *A. /20, aoo 0.S lo,000 gouge ougth EL-46 Lg- 2.0 0.46 2.0 2.92 in Ls e2 An -0.25 in O.S-o.2r

Add a comment
Know the answer?
Add Answer to:
A test specimen in a tensile test has a gage length of 2.0 in and an area 0.5 in". During the test the Specimen...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length...

    Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length = 50 mm and its cross-sectional area = 100 mm. The specimen yields at 48,000 N, and the corresponding gage length - 50.23 mm. This is the 0.2 ent yield point. The maximum load of 87,000 N is reached at a gage length 64.2 mm. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength. (d) If fracture occurs at a gage...

  • A tensile test specimen has a gage length = 50 mm and diameter = 20 mm....

    A tensile test specimen has a gage length = 50 mm and diameter = 20 mm. Yielding occurs at a load of 137900. The corresponding gage length = 51 mm, which is the 0.2 percent yield point. The maximum load of 258100 N is reached at a gage length = 62.8 mm. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength.

  • Question 15 15 pts A tensile test specimen has a 2.088"gage length and 0.905" diameter. Yield...

    Question 15 15 pts A tensile test specimen has a 2.088"gage length and 0.905" diameter. Yield occurs at a load of 27.808.7 lb wherein the specimen gage is 83.0 10-4"longer. This is an 0.2 percent yield point. Young's Modulus is __psi. Question 16 15 pts A tensile test specimen has a 2.0 in. gage length and 0.875 in. diameter. Yield occurs at a load of 31,000.0 lb wherein the specimen gage is 83.0 10-4 in longer. This is an 0.2...

  • Q1: A fiberglass composite is composed of a matrix of vinyl ester and reinforcing fibers of...

    Q1: A fiberglass composite is composed of a matrix of vinyl ester and reinforcing fibers of E-glass. The volume fraction of E-glass is 31%. The remainder is vinyl ester. The density of the vinyl ester is 0.651 g/cm3, and its modulus of elasticity is 4.89 GPa. The density of E-glass is 2.685 g/cm3, and its modulus of elasticity is 71 GPa. A section of composite 1.00 cm by 25.00 cm by 200.00 cm is fabricated with the E-glass fibers running...

  • Given the following data from a tensile test. Show your calculations for the following: Tensile Stress...

    Given the following data from a tensile test. Show your calculations for the following: Tensile Stress Modulus of Elasticity (Young’s Modulus) Yield Strength Percentage of elongation Percentage of reduction in area The following data were collected from a 12-mm-diameter test specimen of magnesium (l. = 30.00 mm): 250 Vielding 0.2% offset Load (N) 0 5,000 10,000 15,000 20,000 25,000 26,500 27,000 26,500 25,000 Gage Length (mm) 0.0000 0.0296 0.0592 0.0888 0.15 0.51 0.90 1.50 (maximum load) 2.10 Stress (MPa) oro...

  • A Grade 2 Titanium tension test specimen has a diameter of 12.60 mm and a gage...

    A Grade 2 Titanium tension test specimen has a diameter of 12.60 mm and a gage length of 50 mm. In a test to fracture, load and deformation data obtained during the test are given in the accompanying table. Plot the stress strain relationship then, determine the following: (a) the modulus of elasticity. (b) the proportional limit. (c) the yield strength (0.20% offset). (d) the ultimate strength. (e) the fracture stress. (f) the true fracture stress if the final diameter...

  • A steel cable with a yield strength of 35 ksi is used to support a load...

    A steel cable with a yield strength of 35 ksi is used to support a load of 10000 lb. Select the diameter of the cable using a factor of safety of 2.5. A standard steel specimen having a diameter of 0.502 in, and a gauge length of 2.00 in is used in a tension test. At 6000 lb the deformation is recorded as 0.00212 in. The load at the yield point is 7130 lb and the ultimate load is 11520...

  • 1. A tensile test was performed using a standard 0.505 in. diameter specimen (Do 0.505 in)...

    1. A tensile test was performed using a standard 0.505 in. diameter specimen (Do 0.505 in) of 4140 steel with 2 inch initial gage length (Lo 2.00 in), and the following were determined: . Elastic Modulus (E)-30 x 106 psi Yield Strength (To) = 60,000 psi Strain at maximum load = 0.15 .Breaking Load (Pbreak) 15,000 lbs Maximum Load (Pa) 20,000 lbs 0 % Elongation-25% . a. (3 points) Calculate the stress at the break point: b. (5 points) Calculate...

  • Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d...

    Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d = 7.42, lo = 40mm (4 marks) Load, KN Extension, mm Stress, MPa Strain 0 0 10 0.05 17 0.08 25 0.11 30 0.14 34 0.20 37.5 0.40 38.5 0.60 36 0.90 Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) A = T d2 4 E = Sy Ey ST = PU A %EL = Extension at fracture Gauge...

  • please be very 100% sure before doing. thank you (1) (25 points) Load-elongation dataset were obtained...

    please be very 100% sure before doing. thank you (1) (25 points) Load-elongation dataset were obtained from a tensile test of high-strength steel as shown in the table. The test specimen had a diameter of 0.505 in. and a gage length of 2.00 in. The Poisson's ratio of high-strength steel is found to be 0.33 At fracture, the elongation between the gage marks was 0.12 in and the minimum diameter was 0.42 in 1) Plot the engineering stress-strain curve using...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT