Question

weld greinrad nod HH ilin 36:9 Cod: 16 JS-416 0:s
the pendulum consists of a uniform disk welded at its edge to the emd of a uniform rod. What is the moment of interia of the composite rigid body about an axis through point O?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

0 The axis ruens 36 It 12 inertia = 6X (24x2) 2 12 Answer det us consider the system of pendeteam to consist of long thin cylYou have written the data with brush so it was hard to read the values. The procedure is absolutely correct. If I misunderstood the value of any please pardon me and do necessary corrections to it. If you like my answer give a thumb up, thank you in advance.

Add a comment
Know the answer?
Add Answer to:
the pendulum consists of a uniform disk welded at its edge to the emd of a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally m...

    Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally mounted with a friction-less horizontal axis of rotation that extends through the center of mass of the disk. The rod is fixedly attached to the edge of the disk and it extends vertically downward when the pendulum is in a state of static...

  • The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm...

    The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm and mass 400 g attached to a uniform rod with length L = 410 mm and mass 250 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and the center of mass of the pendulum? (c) Calculate the period of oscillation.

  • A grandfather clock has a pendulum that consists of a thin brass disk of radius 37...

    A grandfather clock has a pendulum that consists of a thin brass disk of radius 37 cm and mass 1.6 kg that is attached to a long, thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk. The pendulum should be designed so that its period is 2 s for small oscillations when the gravitational acceleration is 9.8 m/s2. (a) What should the length...

  • A grandfather clock has a pendulum that consists of a thin brass disk of radius 27...

    A grandfather clock has a pendulum that consists of a thin brass disk of radius 27 cm and mass 1.1 kg that is attached to a long, thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk. The pendulum should be designed so that its period is 2 s for small oscillations when the gravitational acceleration is 9.8 m/s2. (a) What should the length...

  • A grandfather clock has a pendulum that consists of a thin brass disk of radius r...

    A grandfather clock has a pendulum that consists of a thin brass disk of radius r = 14.38 cm and mass 0.8261 kg that is attached to a long thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk, as shown in the figure. If the pendulum is to have a period of 1.592 s for small oscillations at a place where g =...

  • 2) The pendulum consists of 1 kg slender rod and 2 kg thin plate welded together....

    2) The pendulum consists of 1 kg slender rod and 2 kg thin plate welded together. The rectangular thin plate is then replaced by a circular thin plate of same area (so the plate mass does not change, only its shape changes), as shown by the dotted line. Should the mass moment of inertia about an axis passing through point and perpendicular to the plane of the paper for the pendulum with the circular plate be greater than, less than...

  • A grandfather clock has a pendulum that consists of a thin brass disk of radius 40...

    A grandfather clock has a pendulum that consists of a thin brass disk of radius 40 cm and mass 1.9 kg that is attached to a long, thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk. The pendulum should be designed so that its period is 2 s for small oscillations when the gravitational acceleration is 9.8 m/s2. (a) What should the length...

  • One simple pendulum and the physical pendulums (disk and rod) are suspended on the crossbar, as...

    One simple pendulum and the physical pendulums (disk and rod) are suspended on the crossbar, as shown in figure. (a) Calculate the natural linear frequency of the simple pendulum, if the length of the simple pendulum is =1.6 m (b) Calculate the natural angular frequency of the disk. The radius L 5 of the disk is R=0.5 m; moment of inertia about an axis through the 0.3 R center of mass is ICM =mR2 (c) Calculate the natural period of...

  • Problem Statement: A clock pendulum (shown below) is idealized as a circular disk, of ass m and r...

    Ideal clock pendulum(treat as a rigid body) Problem Statement: A clock pendulum (shown below) is idealized as a circular disk, of ass m and radius R, attached at the end of a rigid, massless rod having length L . D raw a complete Free Body Diagram, treating the whole pendulum as a rigid body. Using the indicated coordinate axes, basis vectors, and system parameters, determine the items below a) The vector form of the Force Balance Law (FBL). (Make sure...

  • The pendulum consists of a 8-kg circular disk A, a 3-kg circular disk B, and a...

    The pendulum consists of a 8-kg circular disk A, a 3-kg circular disk B, and a 6-kg slender rod. Suppose that a = 0.5 m, b = 1.2 m, c = 0.5 m, and d = 0.3 m. (Figure 1) Determine the radius of gyration of the pendulum about an axis perpendicular to the page and passing through point O. Express your answer to three significant figures and include the appropriate units. K_O = Value Units

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT