Question

Parameter Variable Units Amplitude A m MAS kg Spring A constant N/m External Force F N Frequency rads

A system made up of a mass (m) attached to a spring (k) will oscillate to a specific amplitude (a) depending on an external force (f) and initial conditions. If all the variables involved are given in the table, formulate the necessary Pi groups to describe this behavior.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

please provide upvote and support my efforts..!

Let us write these variables with their dimensions the question are mass, spring constant, external force, frequency given vamol we have ka [m27-2] kx[m2 +2] will be dimenionless ... PEK [[m) CAJ°C w }]. Piek is one pi-term . Pi=k moz, we celso ha

Add a comment
Know the answer?
Add Answer to:
A system made up of a mass (m) attached to a spring (k) will oscillate to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A system made up of a mass (m), attached to a spring of stiffness k [N/m]...

    A system made up of a mass (m), attached to a spring of stiffness k [N/m] will oscillate to a specific amplitude (A) which will depend on an external force (F) and initial conditions. If all the variables involved are given in Table 1, formulate the necessary Pi groups to describe this behavior. Make sure you write the Pi groups using the parameters involved Variable Units A m m kg Parameter Amplitude Mass Spring constant External Force Frequency k N/m...

  • A system made up of a mass (m), attached to a spring of stiffness k [N/m]...

    A system made up of a mass (m), attached to a spring of stiffness k [N/m] will oscillate to a specific amplitude (A) which will depend on an external force (F) and initial conditions. If all the variables involved are given in Table 1, formulate the necessary Pi groups to describe this behavior. Make sure you write the Pi groups using the parameters involved Parameter Variable Variable Units Amplitude A т Mass m kg Spring k N/m constant External F...

  • A spring with k = 245 N/m has a mass of m = 4.35 kg attached...

    A spring with k = 245 N/m has a mass of m = 4.35 kg attached to it. An external force F whose maximum value is 825 N drives the spring mass system so that it oscillates without any resistive forces. If the amplitude of the oscillatory motion of the spring-mass system is 3.65 cm, find the frequency of the external force that drives this motion. Hz

  • A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface.

    A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface. A second block of mass m is placed on top of the first block. The coefficient of static friction between the two blocks is his. What is the angular frequency of oscillation, and what is the maximum possible amplitude of oscillation such that the second block will not fly off?

  • Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the s...

    Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the spring is stretched 1 m beyond its natural length and given an initial velocity of 1 m/sec back towards its equilibrium position. Find the circular frequency ω, period T, and amplitude A of the motion. (Assume the spring is stretched in the positive direction.) A 7 kg mass is attached to a spring with constant k 112 N m. Given...

  • Suppose a mass of 1 kg is attached to a spring with spring constant k =...

    Suppose a mass of 1 kg is attached to a spring with spring constant k = 2, and rests at equilibrium position. Starting at t = 0, an external force of f(t) = e t is applied to the system. Suppose the surrounding medium offers a damping force numerically equal to β times the instantaneous velocity, where β > 0 is some given number. (a) What is the IVP governing this harmonic motion. (b) For what value(s) of β will...

  • a 2kg mass attached to a spring of k = 32 N/m is free to oscillate...

    a 2kg mass attached to a spring of k = 32 N/m is free to oscillate on a horizontal frictionless surface. the mass is displaced 8 cm to the the right of its equilibrium and set into motion with a leftward push of speed 40 cm/s c) now consider a simple pendulum that undergoes half as many oscillations per unit time as this mass. the pendulum is released from rest at position 1 and oscillates between position 1 and 3....

  • A system composed of a single 5kg mass connected to a spring with a spring constant...

    A system composed of a single 5kg mass connected to a spring with a spring constant of 45 N/m. a) How much force is necessary to displace the mass of a distance of 50cm to the right? b) If the mass is displaced a distance (50cm) and then released, what is the frequency of the resulting oscillation? c) Find an expression for the resulting oscillations x(t) using initial conditions to solve for the amplitude and initial phase.

  • 13. A damped mass-spring system with mass m, spring constant k, and damping constant b is...

    13. A damped mass-spring system with mass m, spring constant k, and damping constant b is driven by an external force with frequency w and amplitude Fo. 2662 where, wo is the (a) Show that the maximum oscillation amplitude occurs when w = natural frequency of the system. where, wd is the (b) Show that the maximum oscillation amplitude at that frequency is A = frequency of the undriven, damped system.

  • A mass m = 3 kg is attached to a spring with spring constant k =...

    A mass m = 3 kg is attached to a spring with spring constant k = 3 N/m and oscillates with simple harmonic motion along the x-axis with an amplitude A = 0.10 m. (a) What is the angular frequency  of this oscillation? (b) What is the period T and the frequency f of the oscillation? (c) If the phase constant  = 0, write down expressions for the displacement, velocity and acceleration of the mass as a function...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT