Question

1 2 1 Show that A=0 0 a diagonal D. 2 is diagonalizable by finding P and D such that P-1AP = D for 3 0

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: Given

A= 1 1 0 0 2 2 0 0 3

Now eigen values are given by

A - XI = 0

\Rightarrow \begin{vmatrix} 1-\lambda & 1 & 0\\ 0 & 2-\lambda & 2\\ 0 & 0 &3-\lambda \end{vmatrix}=0

\Rightarrow(1-\lambda)(2-\lambda)(3-\lambda )=0

\Rightarrow\lambda=1,2,3

all eigen values are distinct and real so A is diagonalizable.

Now, invertible matrix P is given by the eigenvectors.

So let us find eigen vectors corresponding to each eigen value.

Now, eigen vector v_1 corresponsing to \lambda=1 is given by

[A-I]v_1=0

\Rightarrow \begin{bmatrix} 0 & 1 &0 \\ 0 & 1 &2 \\ 0 &0 & 2 \end{bmatrix}\begin{bmatrix} x\\y \\ z \end{bmatrix}=\begin{bmatrix} 0\\0 \\0 \end{bmatrix}

> y=0,2 = 0

By choosing x=1 , we get

v_1=\begin{bmatrix} 1\\0 \\ 0 \end{bmatrix}

Now, eigen vector v_2 corresponsing to \lambda=2 is given by

[A-2I]v_2=0

\Rightarrow \begin{bmatrix} -1 & 1 &0 \\ 0 & 0 &2 \\ 0 &0 & 1 \end{bmatrix}\begin{bmatrix} x\\y \\ z \end{bmatrix}=\begin{bmatrix} 0\\0 \\0 \end{bmatrix}

\Rightarrow x=y,z=0

By choosing x=1 , we get

v_2=\begin{bmatrix} 1\\1 \\ 0 \end{bmatrix}

Now, eigen vector v_3 corresponsing to \lambda=3 is given by

[A-3I]v_3=0

\Rightarrow \begin{bmatrix} -2 & 1 &0 \\ 0 & -1 &2 \\ 0 &0 & 0 \end{bmatrix}\begin{bmatrix} x\\y \\ z \end{bmatrix}=\begin{bmatrix} 0\\0 \\0 \end{bmatrix}

\Rightarrow 2x-y=0,\ \ \ y-2z=0

\Rightarrow 2x=y,\ \ \ y=2z

\Rightarrow x=z,y=2z

By choosing z=1 , we get

v_3=\begin{bmatrix} 1\\2 \\ 1 \end{bmatrix}

Thus,

P=\begin{bmatrix} 1 & 1&1 \\ 0& 1& 2\\ 0& 0 & 1 \end{bmatrix}

Now find inverse of P .

Let

P=IP

\Rightarrow \begin{bmatrix} 1 & 1&1 \\ 0& 1& 2\\ 0& 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0&0 \\ 0& 1& 0\\ 0& 0 & 1 \end{bmatrix}P

applying R_1\to R_1-R_3,\ R_2\to R_2-2R_1

\Rightarrow \begin{bmatrix} 1 & 1&0 \\ 0& 1& 0\\ 0& 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0&-1 \\ 0& 1& -2\\ 0& 0 & 1 \end{bmatrix}P

applying R_1\to R_1-R_2

\Rightarrow \begin{bmatrix} 1 & 0&0 \\ 0& 1& 0\\ 0& 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & -1&1 \\ 0& 1& -2\\ 0& 0 & 1 \end{bmatrix}P

compare it with

I=P^{-1}P

we get

P^{-1}= \begin{bmatrix} 1 & -1&1 \\ 0& 1& -2\\ 0& 0 & 1 \end{bmatrix}

Hence,

D=P^{-1}AP

\Rightarrow D=\begin{bmatrix} 1 & -1&1 \\ 0& 1& -2\\ 0& 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0\\ 0 & 2 & 2\\ 0 & 0 &3 \end{bmatrix}\begin{bmatrix} 1 & 1&1 \\ 0& 1& 2\\ 0& 0 & 1 \end{bmatrix}

\Rightarrow D=\begin{bmatrix} 1 & -1&1 \\ 0& 1& -2\\ 0& 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 0 & 2 & 6\\ 0 & 0 &3 \end{bmatrix}

\Rightarrow D=\begin{bmatrix} 1 & 0&0 \\ 0& 2& 0\\ 0& 0 & 3 \end{bmatrix}

Which is the required solution.

This complete the solution.

Add a comment
Know the answer?
Add Answer to:
1 2 1 Show that A=0 0 a diagonal D. 2 is diagonalizable by finding P...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT