Question

Part I: Show that (y − y ∗ 0 )(y − y ∗ 1 ). . .(y − y ∗ n ) = 5 n+1 2 n Tn+1(x), where x = y/5

Part II: It can be shown that there exists R > 0 such that |f (n) (y)| ≤ Rn for all y ∈ [−5, 5]. Assuming this, show that limn→∞ max{|f(y) − Pn(y)|, y ∈ [−5, 5]} = 0

Ij = COS Problem 1: Recall that the Chebyshev nodes x*, x1,...,x* are determined on the interval (-1, 1) as the zeros of Tn+1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:-

Given that

The interval [-1, 1] as the zeros of

Tn+1(C) = cos((n +1) arccos(2)

T; COS 2j +17 n+1 2 j = 0,1,..., n

FC) = (1+2 on the interval t = 5, 5

degree m that interpolates f at these polats. Then the error estimate for polynomial interpolation gives for ye -5,5

f(y) – Pn(y) If+C) (n+1)! (y - 3)(y – yi)...(y- yn)

for some e -5,5

(y - y0) y - yi)...(y - yn)

C yo = 5x0, y1 = 5.21....Yn = 5.3.7 5

y = 5.2 (5.r – 507) (5.x – 5.21)....(5.2 – 21

(y - y0)(y- yi)...(y - y) = 5+1(1 – 27)(x - 27...(2-2))........(A)

To (2) = 1, T2) =

Tn+1(2) 2xTn (2) - Tn-1(2)

In+1() = (x-)(x - 21)... (1-21

from (1):-

For m = 0

T1(2) = (- 2040

T40 = 2

40

m = 0, j = 0

7T -20 = cos( 1.0

.ro = 0

m = 1:-

T2() = cos(2 cos (2)

cos (2) (32) = 0

LE SOD

cos(20) = 2 cos- 1

  = 2.c -1

T2(2) 2.0 1

From (1)

T2(x) = A1(x - 2)(x -x1)

j = 1, m = 1

co E| COS 22

C 37 COS

21 = cos(T- 4.

21 = - cos

21 2

j = 0, m = 1

COS El

10 COS 4

2

T. (r) - : A1 (x (x + v2 2

T2(2) A1 (x²

For m = 2:-

From (1)

Tz(x) = (2-x)(2-21) (2 - 0) (A2)

j = 0, m = 2

E COS 3

03 = COS

3 27 2

j = 1, m = 2

7 COS سنت انت E |

x^*_1=0

j = 2, m = 2

El COS 3

5 -x; = cos(- 6

2 = cos(TT 6

x^*_2=-\cos(\frac{\pi}{6})

23 V3 2

T_3(x)=\cos (3\cos^{-1}(x))

cos (2) (32) = 0

LE SOD

cos(30) = 4 cos 0 - 3 cos 0

  =4x^3-3x

4x^3-3x=(x-\frac{\sqrt{3}}{2})(x-0)(x+\frac{\sqrt{3}}{2})A_2

4. Az 21)2 =

A2 = 4

So, proceeding thus we have A_n=2^n

T_{n+1}(x)=[(x-x^*_0)(x-x^*_1)...(x-x^*_n)]2^n .......(2)

Part I:-

So, from (A) we have

(y-y^*_0)(y-y^*_1)...(y-y^*_n)=\frac{5^{n+1}T_{n+1}(x)}{2^n}

where n=\frac{4}{5}

Part II:-

It can be shown that there exist R > 0

such that

|f^n(y)|\leq R^n\ \forall\ y\in [-5,5]

and we know,

error estimate

|f(y)-pn(y)|=\frac{f^{n+1}(c)}{(n+1)!}|(y-y^*_0)(y-y^*_1)...(y-y^*_n)|

\leq \frac{R^{n+1}}{(n+1)!}\frac{5^{n+1}}{2^n}T_{n+1}(x)

[by part (1) and |f^n(y)|\leq R^n ]

|f(y)-pn(y)|=\leq \frac{R^{n+1}}{(n+1)!}.\frac{5^{n+1}}{2^n}\cos ((n+1) \cos^{-1}(x))

  \leq \frac{R^{n+1}}{(n+1)!}.\frac{5^{n+1}}{2^n}[|\cos (n+1) \cos^{-1}(x)|\leq 1]

\lim_{m\rightarrow \infty}max|f(y)-pn(y)|=\lim_{m\rightarrow \infty}\frac{R^{n+1}5^{n+1}}{(m+1)!2^n}

\lim_{m\rightarrow \infty}\frac{R^{n+1}5^{n+1}}{(m+1)!2^n}

\lim_{n\rightarrow \infty}max|f(y)-pn(y)|=0\ for\ y\in[-5,5]

5R\lim_{m\rightarrow \infty}\frac{(\frac{5R}{2})^n}{(m+1)!}

[\therefore \frac{5R}{2}=p]

=5R\lim_{n\rightarrow \infty}\frac{p^n}{(n+1)!}

= 0

as (n+1)! is increases very fast as n grows large

Hence \lim_{n\rightarrow \infty}\frac{p^n}{(n+1)!}=0

Thanks for supporting...

Please give positive rating...

  

Add a comment
Know the answer?
Add Answer to:
Part I: Show that (y − y ∗ 0 )(y − y ∗ 1 ). ....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT