Question

Calculate the amount of evolution in one generation for the following scenario for alleles A1 and...

  1. Calculate the amount of evolution in one generation for the following scenario for alleles A1 and A2 (p = frequency of A1):

Initial allele frequencies: p = 0.4, q = 0.6 Fitness: W11 = 0.85, W12 = 1.00, W22=0.70

  1. What are the genotype frequencies among juveniles at the beginning of this generation (assuming random mating in the previous generation)?
  2. What is the mean fitness of the population in this generation?
  3. What will be the allele frequencies in the next generation following selection?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ansi Initial allele frequencies :- pao.4 q=0.6 a) Genotype frequencies of A, A frequencies of A,A, = P² = (0.43² = 0.16 A₂Azb) Fitness W = 0.85 W12=1.00, W22=0.70 Mean fitness (WAA) + 2pq (waa) + (waa) or El p² (Wil) + 2pq (wig) +.q² (Wez) = 0.16 (0a) genotypic frequency of A1A1= 0.16

genotypic frequency of A1A2=0.48

genotypic frequency of A2A2=0.36

b) mean fitness value= 1.092

c) allelic frequency of A1 after selection= 0.344

allelic frequency of A2 after selection= 0.450

Add a comment
Know the answer?
Add Answer to:
Calculate the amount of evolution in one generation for the following scenario for alleles A1 and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the amount of evolution in one generation for the following scenario for alleles A1 and...

    Calculate the amount of evolution in one generation for the following scenario for alleles A1 and A2 (p = frequency of A1): Initial allele frequencies: p = 0.4, q = 0.6 Fitness: W11 = 0.85, W12 = 1.00, W22=0.70 What are the genotype frequencies among juveniles at the beginning of this generation (assuming random mating in the previous generation)? What is the mean fitness of the population in this generation? What will be the allele frequencies in the next generation...

  • In a population where there is a heterozygous advantage, if the relative fitness of the A1A1(W11)...

    In a population where there is a heterozygous advantage, if the relative fitness of the A1A1(W11) genotype is 0.6, A1A2/W12) is 1.0, and A2A2(W22) is 0.9, at equilibrium the frequency of the A2 allele will be: 0 0.2 . 0.6 0.8 0.4

  • Find the calculations for the data of this population? a) Calculate the relative fitness for each...

    Find the calculations for the data of this population? a) Calculate the relative fitness for each of the three genotypes? b) What is the mean fitness of this population, and how do you expect it to change in response to selection? c) Based on the calculations in a), calculate the values of h and s. What type of selection has occured? d) If the surviving individuals mate at random, what will be the genotype frequencies in the next generation (...

  • 4. Say we have a population, with Ne = 100, containing two alleles, A1 and A2...

    4. Say we have a population, with Ne = 100, containing two alleles, A1 and A2 at frequencies 0.6 and 0.4, respectively. We leave this population alone for 10000 generations (keeping its size constant), then come back to find that the allele frequencies are still 0.6 and 0.4. a) Explain why this would be evidence that selection is acting in this population. b) Which genotype would you expect to have the highest fitness in this case? Explain.

  • A mainland population of 1000 blue iguanas have the neutral alleles A1 and A2 with frequencies...

    A mainland population of 1000 blue iguanas have the neutral alleles A1 and A2 with frequencies of A1 = 0.50 and A2 = 0.50. A new population of blue iguanas is founded on Lizard Island with a population size of 10 males and 15 females. The neutral alleles A1 and A2 are present in the population with frequencies of A1 = 0.30 and A2 = 0.70. Migrants begin moving from the mainland to Lizard Island at a rate of 1...

  • 1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a...

    1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a) with classical Mendelian dominance that are at equal frequency (p0.5. q 0.5). Assume this first generation is at hardy Weinberg equilibrium. Calculate the genotype frequencies AA- a. Aa b. Now assume some environmental change that makes the recessive phenotype completely unfit (fitness- 0). Calculate the allele frequencies and genotype frequencies in the second generation. (Hint: Your calculations might be easier if...

  • Assume that the allele frequencies of alleles A1 and A2 were 0.2 and 0.8 in one...

    Assume that the allele frequencies of alleles A1 and A2 were 0.2 and 0.8 in one subpopulation and 0.4 and 0.6 in another subpopulation. Assuming that there are Hardy-Weinberg proportions within each subpopulation and that the subpopulations are of equal size, what would be the observed heterozygosity if these populations were lumped? How does this compare to what would be expected if there were one random-mating population?? Calculate the same values for the three heterozygotes when the subpopulations had frequencies...

  • 2. Which of the following correctly describes how inbreeding will affect genotype and allele frequencies in...

    2. Which of the following correctly describes how inbreeding will affect genotype and allele frequencies in Hardy-Weinberg populations? Genotype and allele frequencies will be unaffected. The frequency of heterozygotes will decrease, but allele frequencies will be unaffected. The frequency of homozygotes will increase, and deleterious alleles will decrease. Beneficial alleles will increase in frequency, as well as the genotypes containing those alleles. Genotype frequencies will return to H-W expectations after 1 generation of random mating. 3. Consider a population with...

  • Consider a locus with two alleles - A and a. These alleles are codominant, meaning that...

    Consider a locus with two alleles - A and a. These alleles are codominant, meaning that the fitness of the heterozygote is halfway between either homozygote. Consider further a population of randomly mating green frogs where the genotype counts are AA = 500, Aa = 250, and aa = 250. In this population the relative fitnesses of each genotype are AA = 1.00, Aa = 0.80, and aa = 0.60. What is the expected allele frequency change for A after...

  • Consider a locus with two alleles - A and a. These alleles are codominant, meaning that...

    Consider a locus with two alleles - A and a. These alleles are codominant, meaning that the fitness of the heterozygote is halfway between either homozygote. Consider further a population of randomly mating green frogs where the genotype counts are AA = 500, Aa = 250, and aa = 250. In this population the relative fitnesses of each genotype are AA = 1.00, Aa = 0.80, and aa = 0.60. What is the expected allele frequency change for A after...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT