Question

Consider a harmonic oscillator with Hamiltonian given by ?=(p^2/2m)+(1/2)X^2 = (a+)(a-)+(1/2) The current system state is...

Consider a harmonic oscillator with Hamiltonian given by ?=(p^2/2m)+(1/2)X^2 = (a+)(a-)+(1/2)

The current system state is the superposition of the lowest and next-to-lowest energy eigenstates that gives the most negative possible value for the average position, use raising and lowering operators to derive the average momentum for this state.

then, simplify using ħ = ? = 1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

H = 2 P 2m + p=ijn 2 1 2 = (ata + 1) <p> = (n/Pln+1) nhw (ata) c nhw (nlat-a/n+1) - domku { <nla lnt) - <n/aIn+1)] in Int2/nplz like

Add a comment
Know the answer?
Add Answer to:
Consider a harmonic oscillator with Hamiltonian given by ?=(p^2/2m)+(1/2)X^2 = (a+)(a-)+(1/2) The current system state is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 10. A harmonic oscillator with the Hamiltonian H t 2m dr? mooʻr is now subject to...

    10. A harmonic oscillator with the Hamiltonian H t 2m dr? mooʻr is now subject to a 2 weak perturbation: H-ix. You are asked to solve the ground state of the new Hamiltonian - À + in two ways. (a) Solve by using the time-independent perturbation theory. Find the lowest non- vanishing order correction to the energy of the ground state. And find the lowest non vanishing order correction to the wavefunction of the ground state. (b) Find the wavefunction...

  • Consider a linear harmonic oscillator whose Hamiltonian is given by 1? д2 Н 2m дд? 2...

    Consider a linear harmonic oscillator whose Hamiltonian is given by 1? д2 Н 2m дд? 2 hw(n1/2) with eigenvalues En n 0,1,2,... Please (1) derive its density matrix in momentum representation, and (2) evaluate the mean energy (H with results obtained in last question Consider a linear harmonic oscillator whose Hamiltonian is given by 1? д2 Н 2m дд? 2 hw(n1/2) with eigenvalues En n 0,1,2,... Please (1) derive its density matrix in momentum representation, and (2) evaluate the mean...

  • 1. The two dimensional Harmonic Oscillator has the Hamiltonian n, n'>denotes the state In> of the...

    Please solve with the explanations of notations 1. The two dimensional Harmonic Oscillator has the Hamiltonian n, n'>denotes the state In> of the x-oscillator and In'> of the y-oscillator. This system is perturbed with the potential energy: Hi-Kix y. The perturbation removes the The perturbation removes the degeneracy of the states | 1,0> and |0,1> a) In first order perturbation theory find the two nondegenerate eigenstates of the full b) Find the corresponding energy eigenvalues. На Hamiltonian as normalized linear...

  • 3 Problem Three [10 points] (The Quantum Oscillator) We have seen in class that the Hamiltonian...

    3 Problem Three [10 points] (The Quantum Oscillator) We have seen in class that the Hamiltonian of a particle of a simple Harmonic oscillator potential in one dimension can be expressed in term of the creation and annihilation operators àt and à, respectively, as: or with In >, n = 0,1,..) are the nth eigenstates of the above Hamiltonian. Part A A.1. Show that the energy levels of a simple harmonic oscillator are E,' Aw (nti), n=0, 12, A.2. Calculate...

  • 6 The Fermionic Oscillator Suppose that we constructed a harmonic oscillator Hamiltonian H in terms of...

    6 The Fermionic Oscillator Suppose that we constructed a harmonic oscillator Hamiltonian H in terms of raising and lowering operators a+,a in the usual way, such that but now whereaa obey the anticommutation relationn (Be careful! The a+,a are operators, rather than numbers.) (a) Suppose I give you a wavefunction that solves the time-independent Schrödinger equation, i.e. such that HUn-EUn-hw (n + ) ψη. Is a+Un also a solution to the time-independent Schrödinger equation If so, what is its energy...

  • 1. Quantum harmonic oscillator (a) Derive formula for standard deviation of position measurement ...

    1. Quantum harmonic oscillator (a) Derive formula for standard deviation of position measurement on a particle prepared in the ground state of harmonic oscillator. The formula will depend on h, m andw (b) Estimate order of magnitude of the standard deviation in (a) for the LIGO mirror of mass 10 kg and w 1 Hz. (c) A coherent state lo) is defined to be the eigenstate of the lowering operator with eigenvalue a, i.e. à lo)a) Write la) as where...

  • The Hamiltonian of a harmonic oscillator is: 2m 2 Show that: (1) [ł, î] =ihp ()...

    The Hamiltonian of a harmonic oscillator is: 2m 2 Show that: (1) [ł, î] =ihp () [f.h]=-ihmoʻx

  • PLEASE ANSWER ALL PARTS AND BE AS NEAT AND AS CLEAR AS POSSIBLE. THANK YOU (a)...

    PLEASE ANSWER ALL PARTS AND BE AS NEAT AND AS CLEAR AS POSSIBLE. THANK YOU (a) Show that the Hamiltonian for the quantum harmonic oscillator problem, 1 A = 5 mw?22 Ø 2 2m can be expressed solely in terms of the lowering and raising operators and constants. The lowering and raising operators are: 1 ( . mw2 -Ê + ſhw J2m Ô and ma2 â 1 Vhw • evento). 2 2m (Hint: If I were doing this problem, I...

  • 4. Let us revisit the shifted harmonic oscillator from problem set 5, but this time through...

    4. Let us revisit the shifted harmonic oscillator from problem set 5, but this time through the lens of perturbation theory. The Hamiltonian of the oscillator is given by * 2m + mw?f? + cî, and, as solved for previously, it has eigenenergies of En = hwan + mwra and eigenstates of (0) = N,,,a1 + role of (rc)*/2, where Do = 42 and a=(mw/h) (a) By treating the term cî as a perturbation, show that the first-order correction to...

  • Question A2: Coherent states of the harmonic oscillator Consider a one-dimensional harmonic oscillator with the Hamiltonian...

    Question A2: Coherent states of the harmonic oscillator Consider a one-dimensional harmonic oscillator with the Hamiltonian 12 12 m2 H = -2m d. 2+ 2 Here m and w are the mass and frequency, respectively. Consider a time-dependent wave function of the form <(x,t) = C'exp (-a(x – 9(t)+ ik(t)z +io(t)), where a and C are positive constants, and g(t), k(t), and o(t) are real functions of time t. 1. Express C in terms of a. [2 marks] 2. By...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT