Question

4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive displacement of 2 in from its equilibrium pos

0 0
Add a comment Improve this question Transcribed image text
Answer #1

GoT W=alb e=1.5in 110)=2 f) = 26857 to get yo=0 Bom wang & & wake maha) - f 4=KCA k=32 4= m(31) 4-K The equation is malt ky =16 cesst. 247 The general solution of O is to Ic tip YCH2 G CBb7+ @Simlott 247 70)=2=) GC1)+(210)+ 16 (1)=2 - G=2-16 478 247

Add a comment
Know the answer?
Add Answer to:
4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a...

    4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive displacement of 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and that the mass is acted on by an external force of 2 cost 3t lb, formulate and solve the initial value problem describing the mat of th

  • A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the...

    A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the weight is then struck to set it into motion with an initial velocity of 2 ft/sec, directed downward. Determine the equations of motion for the position and the velocity of the weight. Find the amplitude, period, and frequency of the position (displacement). A 4-lb weight stretches a spring 1 ft. If the weight moves in a medium where the magnitude of the damping force...

  • 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. ...

    1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping force equal to 0.5 times the instantaneous velocity. Find the equation of motion if the mass is released from rest at a position 18 inches above the equilibrium. 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping...

  • ro A mass of 5 kg stretches a spring 20 cm. The mass is acted on...

    ro A mass of 5 kg stretches a spring 20 cm. The mass is acted on by an external force of 10 sin N (newtons) and moves in a medium that imparts a viscous force of 4 N when the speed of the mass is 2 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 9 cm/s, formulate the initial value problem describing the motion of the mass. (Use g = 9.8...

  • (a) Evaluate along the elipse (b) A mass that weights 12 [lb] stretches a spring 6...

    (a) Evaluate along the elipse (b) A mass that weights 12 [lb] stretches a spring 6 [in]. The system is acted on by an external force of [lb]. At he mass is pulled up 5 [in] above its equilibrium position and then released. Write an initial value problem describing this spring-mass system. Determine the position of the massat any time. Determine the first two times at which the velocity of the mass is zero.

  • (1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is...

    (1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is displaced an additional 11 in in the positive (downward) direction and then released with an initial upward velocity of 2 ft/s. The mass is in a medium, that exerts a viscuouse resistance of 1 lb when the mass has a velocity of 4 ft/s. Assume g 32 ft/s is the gravitational acceleration (a) Find the mass m (in lb.s/ft) (b) Find the damping coefficient...

  • 21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is...

    21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is set in motion from its equilibrium position with a downward velocity of I m/s. Find an equation for the position of the spring at any time t. A cm. The damping constant is c 0.4. External vibrations create a force of 32 21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is set in motion from its equilibrium...

  • Suppose a mass weighing 32 lb stretches a spring 2 ft. If the mass is released from rest at the e...

    Suppose a mass weighing 32 lb stretches a spring 2 ft. If the mass is released from rest at the equilibrium position, find the equation of motion x(t) if an impressed force f (t) - sin t acts on the system for 0 t 2π and is then removed Suppose a mass weighing 32 lb stretches a spring 2 ft. If the mass is released from rest at the equilibrium position, find the equation of motion x(t) if an impressed...

  • 1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds...

    1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force that is equal to 0.4 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. (Use the convention that displacements measured below the equilibrium position are positive.) (b)...

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT