Question

(1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is displaced an additional 11 in in the positive (do

0 0
Add a comment Improve this question Transcribed image text
Answer #1

8 tb ft c Domping cofficientResdanee 4h Velocify s b) initial displacmenょ 矿而さす。 o-2s ft -茌 The duefevevdral equation is given

Add a comment
Know the answer?
Add Answer to:
(1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Help please and show all work to the answer. If written please have work legible. Will...

    Help please and show all work to the answer. If written please have work legible. Will up vote for correct answer. (1 point) A mass weighing 10 lb stretches a spring 6 in. Suppose the mass is displaced an additional 11 in in the positive (downward) direction and then released with an initial upward velocity of 3 ft/s. The mass is in a medium, that exerts a viscuouse resistance of 3 lb when the mass has a velocity of 2...

  • A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the...

    A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the weight is then struck to set it into motion with an initial velocity of 2 ft/sec, directed downward. Determine the equations of motion for the position and the velocity of the weight. Find the amplitude, period, and frequency of the position (displacement). A 4-lb weight stretches a spring 1 ft. If the weight moves in a medium where the magnitude of the damping force...

  • A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a...

    A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a viscous damper with damping constant 3 lb-s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 6 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

  • A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a...

    A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a viscous damper with damping constant 3 lb ·s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached...

    < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached to a viscous damper with damping constant 4lb-s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 5 in/s. Determine the position u of the mass at any time t. Use 32 ft/s” as the acceleration due to gravity. Pay close attention to the units. u(t) = in

  • A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in...

    A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in a medium that offers a damping force numerically equal to 3 times the instantaneous velocity. The mass is initially released from the equilibrium position with a downward velocity of 4 ft/s. Find the spring constant ?, mass ? and the damping constant ? Find ? and ?, and the roots of the characteristic equation: Write the initial conditions: Estimate the time when the mass...

  • A mass weighing 9 lb stretches a spring 8 in. The mass is pulled down an...

    A mass weighing 9 lb stretches a spring 8 in. The mass is pulled down an additional 7 in and is then set in motion with an initial upward velocity of 2 ft/s. No damping is applied. a. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) = 5 cos (4 3 t) + sin(4V3 t) 2V3 b. Determine the period, amplitude...

  • (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is...

    (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Find the equation of motion, ä(t). What type of damped motion is this system?

  • 3. < Previous Ne A mass weighing 9 lb stretches a spring 4 in. The mass...

    3. < Previous Ne A mass weighing 9 lb stretches a spring 4 in. The mass is pulled down an additional 3 in and is then set in motion with an initial upward velocity of 6 ft/s. No damping is applied. a. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) = ft b. Determine the period, amplitude and phase of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT