Question

The electronic configuration for boron is 1s2 2s2 2p1, and the electronic configuration for aluminum is...

The electronic configuration for boron is 1s2 2s2 2p1, and the electronic configuration for aluminum is 1s2 2s2 2p6 3s2 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)?

Group of answer choices

Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV.

Since each electron is in a p orbital, the energy required will be equal to 8.298 eV.

Since the outermost electron around boron is in the n = 2 state, and the outermost electron around aluminum is in the n = 3 state, the energy required will be less than 8.298 eV.

Since the outermost electron around boron is in the n = 2 state, and the outermost electron around aluminum is in the n = 3 state, the energy required will be greater than 8.298 eV.

None of the above.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The energy required will be less than 8.298 volt. Since there is 3p orbital for the electron in aluminium so there will be less enegry required to remove it as compared to the boron. Because a fully filled orbit blocks the attractive force between the outer orbit electron and the neucleus and act as a blocking shell. So less energy is required to remove the electron since it is loosely attached to the neucleus.

Add a comment
Know the answer?
Add Answer to:
The electronic configuration for boron is 1s2 2s2 2p1, and the electronic configuration for aluminum is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The electronic configuration for boron is 1s2 2s2 2p1, and the electronic configuration for aluminum is...

    The electronic configuration for boron is 1s2 2s2 2p1, and the electronic configuration for aluminum is 1s2 2s2 2p6 3s2 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron.  What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the energy required will be equal...

  • The electronic configuration for boron is 152 252 2p1, and the electronic configuration for aluminum is...

    The electronic configuration for boron is 152 252 2p1, and the electronic configuration for aluminum is 192 252 2p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the energy required will be...

  • The electronic configuration for boron is 152 2s22p1, and the electronic configuration for aluminum is 1s2...

    The electronic configuration for boron is 152 2s22p1, and the electronic configuration for aluminum is 1s2 2s22p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the energy required will be equal to...

  • Question 22 5 pts The electronic configuration for boron is 1s2 2s22p1, and the electronic configuration...

    Question 22 5 pts The electronic configuration for boron is 1s2 2s22p1, and the electronic configuration for aluminum is 152 252 2p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p 1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the...

  • The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s22s2 2p6...

    The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s22s2 2p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 ev. Since each electron is in a p orbital, the energy required will be equal to 8.298...

  • Question 22 5 pts The electronic configuration for boron is 152 2s22p1, and the electronic configuration...

    Question 22 5 pts The electronic configuration for boron is 152 2s22p1, and the electronic configuration for aluminum is 1s2 252 2p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the energy...

  • The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s22s22p6 352...

    The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s22s22p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a porbital, the energy required will be equal to 8.298 ev. Since...

  • Question 22 5 pts The electronic configuration for boron is 1s22s22p1, and the electronic configuration for...

    Question 22 5 pts The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s2 2s22p6 352 3p1. It requires 8.298 eV to remove the outermost electron (21) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 ev. Since each electron is in ap orbital, the energy required will be...

  • 0.747 m/s Question 22 5 The electronic configuration for boron is 1s22s22p1, and the electronic configuration...

    0.747 m/s Question 22 5 The electronic configuration for boron is 1s22s22p1, and the electronic configuration for aluminum is 1s22s22p6 352 3p1. It requires 8.298 eV to remove the outermost electron (2p1) from boron. What can you say about the energy required to remove the outermost electron from aluminum (3p1)? Since each is the outermost electron around the atom, the energy required will be equal to 8.298 eV. Since each electron is in a p orbital, the energy required will...

  • The electronic configuration for sodium is 1s2 2s2 2p6 3s1, and the electronic configuration for potassium...

    The electronic configuration for sodium is 1s2 2s2 2p6 3s1, and the electronic configuration for potassium is 1s2 2s2 2p6 3s2 3p6 4s1. It requires 5.1 eV to remove the outermost electron (3s1) from sodium. What can you say about the energy required to remove the outermost electron from potassium (4s1)? Since each is the outermost electron around the atom, the energy required will be equal to 5.1 eV. Since each electron is in an s orbital, the energy required...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT